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Abstract 

These proceedings contain a record of the talks presented and papers 
submitted by participants of the 5[h Joint Russian-American Computational 
Mathematics Conference. The conference participants represented three 
institutions from the United States, Sandia National Laboratories (SNL), 
Los Alamos National Laboratory (LANL), Lawrence Livermore National 
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PARALLELING CALCULATIONS IN 3D ELECTROMAGNETIC 

SIMULATION CODE 

G. A. Adamkevich. G. V. Baidin. I. A. Litvinenko. 1“. A. Rotko. 

RFNC-VNIITF, Russia 

Abstract 

Presentation touches upon the issues related to a structure of code for 3D simulation 

of plasma electrodynamics problems which will enable to parallel the code efficiently on 

available multiprocessors. Peculiarities of 3D calculations and hybrid description of 

charge carriers are considered as elements speci@ing data and code structure, determining 

specifics of selection of paralleling option. 

-. —----- 



PARALLELIZATION METHODS FOR NUMERICAL SOLUTION-OF 3D 
GROUP NON-STATIONARY EQUATION OF NEUTRON DIFFUSION 

FOR NUCLEAR POWER PLANT SAFETY CALCULATIONS 

A. V. Alexeyev, O. A. Zvenigorodskaya. R. M. Shagaliye\’. 

RFNC-VNIIEF, Russia 

Abstract 

The paper presents an iterative parallelization method for 3D diffision 

problems implemented in reactor progam KOIU4T 3D. It is based on geometric 

decomposition concept which provides the possibility of parallelization on a great 

number of distributed-memory processors. 

As it is known, the idea of geometric decomposition method is in the fact that 

the initial problem solution domain is split into a number of subdomains (to be called 

mathematical domains below) and the diffusion equation is solved separately by 

mathematical domains. The interaction of solutions obtained in different mathematical 

domains is accounted by the internal boundary conditions whose interchange takes place 

on special iterations (on iterations by internal boundary conditions). 

The parallelization method implemented in KORAT 3D program is peculiar for 

the use of a special kind of internal bounda~ conditions. These internal bounda~ 

conditions are a combination of a fill flow fi.mction and the desired function with a 

coefficient selected in this combination basing on a multidimensional analog of a limiting 

run coefficient. 

The paper presents the results of analytical estimations of the iterative process 

convergence rate by internal boundary conditions along with the results of numerical 

evaluations of parallelization efficiency exemplified on a 3 D test problem for channel- 

type reactor. 



METHODS FOR IMPROVING ACCURACY OF THE FIRST-ORDER 
APPROXIMATION SCHEME FOR SOLVING SYSTEMS OF 

EQUATIONS FOR RADIATION TRANSFER 

E. S. Andreyev, V. Yu. Gusev, M. Yu. Kozmanov. 
RFNC-VNIITF, Russia 

Abstract 

Methods are considered to improve schemes of the first order of accuracy embling 

to achieve required accuracy using even a coarse spatial grid. Results are illustrated by the 

examples. To build the scheme, principle of maximum [1,2] is used, a system of non- 

linear difference equations obtained is solved with the method of iterations [3]. The paper 

sets forth development of results presented at the previous conference of five nuclear labs 

described in [4]. 

Reference 

1. E.S. Andreyev, M.Yu. Kozmanov, E.B. Rachilov Principle of Maximum for a System 

of Equations of Energy and Non-stationary Radiation Transfer. - Zhumal Vychislitelnoy 

Matematiki i Matematicheskoy Fiziki. 1983, v.23, #l, pp. 152-159. 

2. M. Yu. Kozmanov Existence Theorem of Solution for Non-Linear System of 

Equations of Non-Stationary Radiation Transfer. - Voprosy Atomnoy Nauki iTekhniki 

Ser. Matematicheskoe Modelirovanie Physicheskikh Processov. 1989 Issue 2. pp. 47-50. 

3. V.YU. Gusev, M.Yu. Kozmanov Methods for Solving of Difference Equations 

Approximating Equations of Thermal Radiation Transfer. - Zhumal Vychislitelnoy 

Matematiki i Matematicheskoy Fiziki. 1986, v.26, #l 1, pp. 1654-1660. 

4. V.YU. Gusev, M.Yu. Kozmanov Conservative Schemes Using Characteristics and 

Anti-Diffusion Velocities to Solve Transfer Equations. - Voprosy Atomnoy Nauki i 

Tekhniki Ser. Matematicheskoe Modelirovanie Physicheskikh Processov. 1996. Issue 1- 

2, pp. 24-32. 

5. M. Yu. Kozmanov Monotone Schemes for the Systems of Radiation Transfer 

Equations. - Voprosy Atomnoy Nauki i Tekhniki Ser. Matematicheskoe Modelirovanie 
Physicheskikh Processov. 1989 Issue 2, pp. 51-54. 
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ANALYTICAL AND NUMERICAL STUDY 
OF ACCELERATED THIN LAYER INSTABILITY 

S. M. Bakhrah and G. P. Sirnonov, 

RFNC-VNIIEF. Russia 

Abstract 

New analytical solutions for Rayleigh-Taylor thin layer instability on a non-linear 

in observer space process stage have been obtained presenting the main equations in 

Lagrangian variables. 

Analytical solutions have been obtained for a liquid layer and an elastic one with 

both 2D and 3D perturbations present. Perturbation evolution dependence is studied in 

respect of perturbation kinds (perturbation of middle surface, layer thickness and 

perturbations in layer velocities) and of non-dimensional parameters determining the 

perturbation nature. Both exponentially growing and bounded solutions exist depending on 

the parameter values. 

The relations of perturbation growth increment and critical acceleration have been 

obtained for a thin elastic layer, the boundaries of solution limitation have been defined. 

The relations determining the strength effect on perturbation growth, particularly on their 

limitation conditions. have been obtained. 

The 3D elastic layer perturbations (with a considerably large shifl module) are 

shown to grow no faster than the 2D. 

The analytical solutions obtained are tested by means of a complete system of 

conservation laws for a compressible continuum. 

The obtained thin layer perturbation growth regularities are observed to take place 

in a semispace of compressible both liquid and elastic continuum. 

The analytical solutions obtained are good tests for 2D and 3D numerical 

techniques for continuum flow calculations. 



A TECHNIQUE FOR RADIATION TRANSFER COMPUTATION WITH 
ACCOUNT OF ANISOTROPIC EMISSION OF BOUNDARY SURFACE 

S. V. Bazhenov and P. I. Pevnaya. 
RFNC-VNIIEF, Russia 

Abstract 

The technique is intended for the solution of radiation transfer equation in 

optically-transparent domain in the case when boundary surface radiation intensity 

distribution is arbitrary enough. 
To solve the problem, the method based on angular coefilcients is used. 

The equation of radiation exchange between boundary surfaces is derived from the 

expression for one-way radiation flux outgoing through the unit boundary area of surface. 

The scheme of calculations proposed by the authors to solve the problem is 

strictly conservative for a common case when the form of the boundary surface depends 

on time. 
While setting the boundary condition the technique gives an ability to use various 

boundary condition types in different areas of the boundary surface. 
The given technique is implemented by the RADIBS program. 

Using this program one may obtain more exact values of geometric ranges which 
will allow to compute radiation transfers in a domain of a small size (as compared to the 

range length in the material) by the diffusion approximation technique. 
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VARIATIONAL DIFFERENCE FLOW-TYPE SCHEME FOR 
3D DIFFUSION EQUATION ON GRIDS OF ARBITRARY 

HEXAHEDRONS 

S. V. Bazhenov. S. P. Belyayev, Yu. A. Bondarenko, V. V. Gorev. 
T. V. Korol’kova. P. I. Pevnaya. 

RFNC-VNIIEF, Russia 

Abstract 

The presentation describes the construction of a difference scheme for 3D 

equation of nonstationary linear isotropic and anisotropic diffusion by variational 

technique using flow-type form of diffhsion equation (generalization for 3D case of the 

following technique: Tishkin V. F., Favorskii A. P., Shashkov M.Yu. Variational difference 

schemes for heat conduction equation on nonreguku grids.// Doklady of the USSR 

Acad.Nauk .-1979, VO1.246, No.6, pp. 1342-1346). An arbitrary grid composed of 

hexahedrons whose bounds are ruled surfaces and edges are segments of straight lines is 

used. Temperature values being averaged over hexahedral cell volumes are used. Flows 

being used are determined at hexahedrons’ bounds, they are avemged over bound surface 
values of flow components normal to bounds. The energy conservation law is being 

approximated in each hexahedron in a standard manner. The relation between flows at 

bounds and temperatures in cells is obtained from the minimality condition for the 

functional 

O(+) = ~D-’k ‘dfl – 2~ U. div~dfl 
Q Q 

which is approximated in a simplest manner and in which only flow components normal 

to hexahedron bounds are varied. As a result, the difference between temperatures oft wo 

neighboring hexahedral cells is expressed via some linear combination of flows through 

these two cells’ bounds. Then temperatures in the upper Iayerare excluded using the 

energy conservation law written in implicit form and this results in linear system of 

equations for normal flows. After approximate calculation of the equation system 

temperatures are being found fi-om the energy balance equation. The scheme version for 

anisotropic diffision is developed for an arbitrary symmetric positively defined tensor of 

diffhsion coefficients and the minimized functional is modified correspondingly. 

To solve numerically the obtained system of difference equations, iterations with 

one-dimensional runs are used that always converge due to the strict convexity of the 

minimized functional. The results of test and methodical computations are given. 
Calculations on orthogonal and strongly oblique grids show that the number of such 

iterations is approximately proportional to the square root from the Courant number. 
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NUMERICAL SIMULATION IN DIFFUSIVE-VACUUM 
APPROXIMATION 

OF RADIANT ENERGY TRANSFER IN THERMONUCLEAR TARGETS 

A. A. Bazin, V. V. Vatulin, Yu. A. Dementyev. V. F. Mironova. 

G. I. Skidan. E. N. Tikhomirova, B. P. Tikhornirov. 

RFNC-VNIIEF. Russia 

Abstract 

An approximated method of numerical solution for 2D and 3D problems of 

radiant energy transfer in multilayer systems consisting of optically thick and thin areas 

is considered. Radiation transfer in optically thick layers is simulated in sectoral 

approximation by the equation of radiant heat conductivity and gas dynamics. The 
propagation of X-ray radiation through optically thin layers is described by integral 

equation of radiation heat conductivity with account of photon delay. 

The equations of radiant heat conductivity and gas dynamics are integrated by 

finite difference method. Integral equation is solved either by a generalized zonal method 

or by method of large photons. Visibility factors (a slope one and of average distances) 

are calculated for meshes on vacuum area surface with varied geometry. To obtain 

solution on a temporal layer a method of separate area calculation is used. Stable exchange 

boundary conditions are set up between optically thick and thin layers. 

h application of di~ive-vacuum method to inertial thermonuclear fkion 

exemplifies its use. 

The characteristics of X-ray radiation field in a construction of a cylindric target 
for heaw ion fusion with converters placed at lateral surface are studied in 2D and 3D 

cases. 

The influence of target parameters and heaw ion beam on the uniformity of X-ray 

radiation distribution field on capsule surface is studied. 
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MOLECULAR DYNAMICS OF SHOCK LOADING OF METALS WITH 
DEFECTS 

J. F. Belak, 

Lawrence Livermore National Laboratory 

Abstract 

The finite rise time of shock waves in metals is commonly attributed to 

dissipative or viscous behavior of the metal. This viscous or plastic behaviour is 

commonly attributed to the motion of defects such as dislocations. Despite this intuitive 

understanding, the experimental observation of defect motion or nucleation during shock 
loading has not been possible due to the short time scales involved. Molecular dynamics 

modeling with realistic interatomic potentials can provide some insight into defect motion 

during shock loading. However, until quite recently, the length scale required to accurately 

represent a metal with defects has been beyond the scope of even the most powerlid 

supercomputers. Here, we present simulations of the shock response of single defects and 

indicate how simulation might provide some insight into the shock loading of metals. 

Work performed under the auspices of the U.S. DOE by LLNL under contract No. 

W-7405 -ENG-48. 
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COMPUTATIONAL SIMULATION OF NON-EQUILIBRIUMPROCES SES 
DURING THERMONUCLEAR FUSIONT 

I. M. Belyakov. S. A. Belkov. V. V. Vatulin. L. L. Vakhlamova. 

O. A. Vinokurov, S. G. Garanin, V. F. Yerrnolovich. N. P. Pleteneva. 
G. NT. Remizov. V. Yu. Rezchikov. N. A. Ryabikina. I. D. Sofronov, 

L. P. Fedotova, R. M. Shagaliyev. 

RFNC-VNIIEF, Russia 

Abstract 

The paper presents the main possibilities of numerical simulation for the 

processes of radiation and material energy transfer in 2D problems of thermonuclear 

fision implemented in the fknes of SATURN and MIMOSA technique communication 

and their application to solve some thermonuclem fision problems. 

SATURN program set computes the processes of spectral X-ray radiation 

transfer, energy transfer by ions and electrons with account of environment non- 
equilibrium, laser radiation energy tranfer and absorption and the ionization kinetics in 
an average ion approximation. 

Multicomponent non-equilibrium gas dynamics movements are calculated in 

MIMOSA code. 

Initial differential equations are approximated by grid (finite-difference and finite 

element) methods. Non-orthogonal spatial grids are used allowing to account the 

peculiarities of computed geometries with a required degree of detail. Special acceleration 

methods are used to economize the computations. 

The computations with a simultaneous account of all the processes named above 

are carried out by special communication programs of SATURN and MIMOSA 

techniques (as a contiuous data exchange). 

The given program package finds a wide application in studying different 

constructions for thermonuclear fusion. 

The possibilities of the given program package are demonstrated by some 

numerical simulation results of heavy ion fusion target with elliptic chamber proposed by 

a group of scientists from Frankfurt University under Prof. Marun I. leadership. 

Numerical results by SATURN+MIMOSA codes have allowed to optimize the 

construction of ellipsoid target. If the radiation field assymetry on the capsule surface 
reached 16°/0 in the first construction versions. the improved version based on numerical 

calculations gave the assymetry value of 10/O. 

The work is being continued. Basing on modem physics-mathematical models the progam 

set implies the calculation possibility for the parameters of non-equillibrium 
multicomponent multicharged plasma in an average ion approximation being taken into 

account in a series of computations for an American LABYRINTH target. The first 

preliminary results have been obtained. 

11 
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SOLUTION OF LARGE NONLINEAR QUASISTATIC STRUCTURAL 
MECHANICS PROBLEMS 

ON DISTRIBUTED-MEMORY MULTIPROCESSOR 
CONIIWTERS 

M. Blanford, 

Sandia National Laboratories 

Abstract 

Most commercially-available quasistatic ftite element programs assemble element 

stiffiesses into a global stifiess matrix, then use a direct linear equation solver to obtain 

nodal displacements. However, for large problems (greater than a few hundred thousand 

degrees of freedom), the memory size and computation time required for this approach 

becomes prohibitive. Moreover, direct solution does not lend itself to the parallel 

processing needed for today’s multiprocessor systems. 

This talk gives an overview of the iterative solution strategy of JAS3D, our 

nonlinear large-deformation quasistatic finite element program. Because its architecture is 

derived from an explicit transient-dynamics code, it does not ever assemble a global 

stifl%ess matrix. I will describe the approach we used to implement the solver on 
multiprocessor computers, and show examples of problems run on hundreds of 

processors and more than a million degrees of freedom. Finally, I will describe some of 

the work we are presently doing to address the challenges of iterative convergence for ill- 

conditioned problems. 
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MOLECULAR DYNAMICS MODELING OF SOLIDIFICATION IN 
METALS 

D. B. Boercker. J. Belak, and J. Glosli. 

Lawrence Livermore National Laboratory 

Abstract 

Molecular dynamics modeling is used to study the solidification of metals at high 

pressure and temperature. Constant pressure MD is applied to a simulation cell initially 

filled with both solid and molten metal. The solid/liquid interface is tracked as a fimction 

of time, and the data is used to estimate growth rates of crystallite at high pressure and 

temperature in Ta and Mg. 

Work performed under the auspices of the U. S. DoE by LLNL under contract No. W- 

7405 -ENG-48. 
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ELIMINATION OF ARTIFICIAL GRID DISTORTION AND 
HOURGLASS-TYPE MOTIONS 

BY MEANS OF LAGRANGIAN SUBZONAL MASSES AND PRESSURES 

E. J. Caramana and M. J. Shashkov. 

Los Alamos National Laborato~ 

Abstract 

The bane of Lagrangian hydrodynamics calculations is premature breakdown of 

the grid topology that results in severe degradation of accuracy and run termination often 

long before the assumption of Lagrangian zonal mass ceased to be valid. At short spatial 

grid scales this is usually referred to by the terms “hourglass” mode or “keystone” 

motion associated in particular with underconstrained grids such as quadrilaterals and 

hexahedrons in two and three dimensions, respectively. 

At longer spatial scales relative to the grid spacing there is what is 

referred to ubiquitously as “spurious vorticity”, or the long-thin zone problem. In both 
cases the result is anomalous grid distortion and tangling that has nothing to do with the 

actual solution, as would be the case for turbulent flow. In this work we show how such 

motions can be eliminated by the proper use of subzonal Lagrangian masses. and 

associated densities and pressures. These subzonal masses arise in a natural way from 

the fact that we require the mass associated with the nodal grid point to be constant in 

time. This is addition to the usual assumption of constant. Lagrangian zonal mass in 

staggered grid hydrodynamics scheme. 

We show that with proper discretization of subzonal forces resulting from 

subzonal pressures, hourglass motion and spurious vorticity can be eliminated for a very 

large mnge of problems. Finally we are presenting results of calculations of many test 

problems. 
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NUMERICAL PRESERVATION OF SYMMETRY PROPERTIES OF 
CONTINUUM PROBLEMS 

E. J. Caramana and P. Whalen. 

Los Alarnos National Laborato~ 

Abstract 

We investigate the problem of perfectly preseming a symmetry associated 

naturally with one coordinate system when calculated in a different coordinate system. 

This allows a much wider range of problems that may be viewed as perturbations of the 

given symmetry to be investigated. We study the problem of preserving cylindrical 

symmetry in two-dimensional cartesian geometry and spherical symmetry in two- 

dirnensional cylindrical geometry. We show that this can be achieved by a simple 

modification of the gradient operator used to compute the force in a staggered grid 

Lagrangian hydrodynamics algorithm. In the absence of the supposed symmetry we 

show that the new operator produces almost no change in the results because it is always 
close to the original gradient operator. Our technique thus results in a subtle manipulation 

of the spatial truncation error in favor of the assumed symmetry but only to the extent 

that it is naturally present in the physical situation. This not only extends the range of 

previous algorithms and the use of new ones for these studies, but for spherical or 

cylindrical calculations reduces the sensitivity of the results to grid setup with equal 

angular zoning that has heretofore been necessary with these problems. Although this 

work is in two-dimensions, it does point the way to solving this problem in three- 

dimensions. This is particularly important for the ASCI initiative. The manner in which 

these results can be extended to three-dimensions will be discussed. 
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PARALLEL DETERMINISTIC NEUTRONICS WITH AMR ~T 3D 

C. Clouse. J. Ferguson. C. Hendrickson. 

Lawrence Livermore National Laboratory 

Abstract 

AMTRANT, a three dimensional Sn neutronics code with adaptive mesh 

refinement (AMR) has been parallelized over spatial domains and energy groups and runs 

on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear 

finite element representations for the fluxes, which allows for a straight forward 

interpretation of fluxes at block interfaces with zoning differences. The load balancing 

algorithm assumes 8 spatial domains, which minimizes idle time among processors. 
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A NEW 2-D, LIMITED, ZONE-CENTERED ARTIFICIAL VISCOSITY 
TENSOR 

M. R. Clover and C. W. Cra.nfdl. 
Los Alarnos National Laboratory 

Abstract 

We have developed a fully 2-d(3-d) formulation of a linear, monotonic limiter for 

use in conjunction with a new zone-centered Lagmngian Q (which we refer to as a 

“discretization” viscosity) suitable for arbitrary connectivity. Rather than min-mod’ing 

du/dx fi-om two adjacent cells onto a node, as in 1-d, we rnin-mod each eigenvalue of the 

strain-rate tensor from all zones adjacent to a node. These are then used to calculate the 

shock (or discretization) jump across the zone in that eigenvector’s direction. We will 
report results on various test problems (e.g. Saltzmann’s piston problem. Coggeshall’s 

similarity solution, etc). 

17 
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QUANTUM MOLECULAR DYNAMICS SIMULATIONS OF DENSE 
MATTER 

L. Collins. J. Kress, N. Troullier, T. Lenosky. and I. Kwon. 

Los Alarnos National Laboratory 

Abstract 

We have developed a quantum molecular dynamics(QMD) simulation method for 

investigating the properties of dense matter in a variety of environments. The technique 

treats a periodically- replicated reference cell containing N atoms in which the nuclei 

move according to the classical equations-of-motion. The interatomic forces are generated 

from the quantum mechanical interactions of the (between?) electrons and nuclei. To 

generate these forces. we employ several methods of varying sophistication from the 

tight-binding(TB) to elaborate density functional schemes. In the latter case. lengthy 

simulations on the order of 200 atoms are routinely performed, while for the TB, which 

requires no self-consistency, upwards to 1000 atoms are systematically treated. The 

QMD method has been applied to a variety cases: 1) fluid/pkisma Hydrogen from liquid 

density to 20 times volume-compressed for temperatures of a thousand to a million 

degrees Kelvin; 2) isotopic hydrogenic mixtures, 3) liquid metals(Li, Na, K): 4) impurities 

such as Argon in dense hydrogen plasmas; and 5) metal/insulator transitions in rare gas 

systems (Ar,Kr) under high compressions. The advent of parallel versions of the 

methods. especially for fast eigensolvers, presage LDA simulations in the range of 500- 

1000 atoms and TB runs for tens of thousands of particles. This leap should allow 

treatment of shock chemistry as well as large-scale mixtures of species in highly transient 

environments. 
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SOURCE DESCRIPTION AND SAMPLING TECHNIQUES USED IN 
PEREGRINE MONTE CARLO CALCULATIONS OF DOSE 

DISTRIBUTIONS FOR RADIATION NCOLOGY 

L. Cox, P. M. Bergstrom, Jr., W. P. Chandler. S. M. Hornstein. A. E. Schach von 
Wittenau. C. L. Hartmann Siantar. 

Lawrence Livermore National Laboratory 

Abstract 

The goal of Lawrence Liverrnore National Laboratory’s PEREGRINE project is to 

provide accurate and fast Monte Carlo calculation of dose distributions for routine clinical 

use in the radiation treatment of cancer. To attain this goal, an accurate and efficient 

method of describing and sampling external radiation sources is essential. We combine 

comprehensive simulations of accelerators with clinical measurements to determine 

accurate, multiple-component descriptions of the patient-independent radiation field. 

Monte Carlo simulations of the accelerators are performed with MCNP/4B anti/or 

BEAM96 based on detailed engineering information obtained from the hnac 

manufacturers. In this presentation, we describe the different source component models 

available in PEREGRINE for deftig complex patient-independent bremsstrahlung 

sources emitted from commercially available linacs. The sampling techniques used with 

the different source models are explained. PEREGRINE methods of handling beam 
modifiers -- such as jaws/collimators, blocks, wedges and multi-leaf collimators -- is 

described. The important aspects of absolute normalization and dose monitor unit 

calculations are discussed. Comparisons to clinical measurements and to standard clinical 

treatment plans are shown. 

This work was performed under the auspices of the U.S. Department of 

Energy by the Lawrence Liverrnore National Laboratory under contract 

number W-7405 -ENG-48. 
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BOUNDARY ACQUISITION FOR SETUP OF NUMERICAL 

SIMULATION 

C. Diegert, 
Sandia National Laboratory 

Abstract 

We present a work flow diagram that includes a path that begins with taking 

experimental measurements, and ends with obtaining insight from results produced by 

numerical simulation. Two examples illustrate this path: 

(1) Three-dimensional imaging measurement at micron scale, using X-ray 

tomography, provides information on the boundaries of irregularly-shaped 

alumina oxide particles held in an epoxy matrix. A subsequent numerical 

simulation predicts the electrical field concentrations that would occur in the 

observed particle configurations. 

(2) Three-dimensional imaging measurement at meter scale, again using X-ray 

tomography, provides information on the boundaries fossilized bone hgrnents in 

a Parasaurolophus crest recently discovered in New Mexico. A subsequent 

numerical simulation predicts acoustic response of the elaborate internal structure 

of nasal passageways defined by the fossil record. 

We must both add value, and must change the format of the three-dimensional 

imaging measurements before the define the geometric boundary initial conditions for the 

automatic mesh generation, and subsequent numerical simulation. We apply a variety of 

filters and statistical classification algorithms to estimate the extents of the structures 

relevant to the subsequent numerical simulation, and capture these extents as faceted 

geometries. We will describe the particular combination of manual and automatic methods 
we used in the above two examples. 

20 



MOVING-LEAST-S QUARES-PARTICLE HYDRODYNAMIC S 

METHOD (MLSPH) 

G. Dilts, 

Los Alamos National Laboratory 

Abstract 

h enhancement of the smooth-particle hydrodynamics (SPH) method has been 

developed using the moving-least-squares (MLS) interpolants of Lancaster and 

Salkauskas which simultaneously relieves the method of several well-known undesirable 

behaviors, including spurious boundary effects, inaccurate strain and rotation rates. 

pressure spikes at imapct boundaries, and the infhrnous tension instability. The classical 

SPH method is derived in a novel manner by means of a Galerkin approximation applied 

to the Lagrangian equations of motion for continua using as basis functions the SPH 

kernel function multiplied by the particle volume. This derivation is then modified by 

simply substituting the MLS interpolants for the SPH Galerkin basis, taking care to 
redefine the particle volume and mass appropriately. The familiar SPH “kernel 

approximation” is now equivalent to a colocation-Galerkin method. Both classical 
conservative and recent non-conservative formulations of SPH can be derived and 

emulated. The non-conservative forms can be made conservative by adding terms that are 

zero within the approximation at the expense of boundary-value considerations. The 
familiar Monaghan viscosity is used. Test calculations of uniformly expanding fluids. the 

Swegle example, spinning solid disks, impacting bars, and spherically symmetric flow 

illustrate the superiority of the technique over SPH. In all cases it is seen that the 

marvelous ability of the MLS interpolants to add up correctly everywhere civilizes the 

noisy, unpredicatble nature of SPH. Being a relatively minor perturbation of the SPH 

method. it is easily retrofitted into existing SPH codes. On the down side, computational 

expense at this point is signiflcan~ the Monaghan viscosity undoes the contribution of 

the MLS interpolants, and one-point quadrature (collocation) is not accurate enough. 

Solutions to these difficulties are being persued vigorously. 
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EXPLOSIVE DECELERATION AND FRAGMENTATION OF 
METEORITES IN THE ATMOSPHERE 

V. P. Elsukov. D. V. Petrov. V. A. Simonenko, O. h’. Shubin. 

RFNC-VNIITF, Russia 

Abstract 
Currently there is a series of experimental facts of observed interaction of 

meteorites with the atmosphere that have no consistent and logical explanation. First of 
all this refers to the burst of Tunguska meteorite at some altitude. No meteorite substance 
was found after this burst. Besides. flashes similar to a fireball of nuclear explosion with 

the yield of 1-100 kT of TNT are recorded in the Earth’s atmosphere regularly. They 

evidence that under some conditions there exists a physical mechanism of explosive 
interaction of meteorites with the Earth’s atmosphere having characteristic features of 

above-surface or high-altitude nuclear explosion. Moreover, there is no contradiction-free 

theory describing fragmentation of meteorites in the atmosphere. 

The paper describes simulation-theoretical model of explosive interaction of 

meteorites with the atmosphere as well as fragmentation of meteorites. This physical 

model can lead to two outcomes. In the first case meteorites with rather low density and 

sizes less than critical one are able to reach only some critical altitude above the Earth’s 

surface. Judging by the consequences of Tunguska burst, f~ sizes of particles are 

microscopic. In the second scenario when density of meteorite is high or sizes are rather 

large, fragmentation process have no time to evolve deeply. In this case, chunks falling on 

the Earth will be of macroscopic size. 

Thus, Sik.hote-Alin event was not of explosive nature. 
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SIMULATION OF THERMOMEC~CAL FATIGUE IN SOLDER 
JOINTS* 

H. E. Fang. V. L. Porter, R. M. Fye. E. A. Helm, 
Sandia National Laboratories 

Abstract 

Therrnomechanical fatigue (TMF) is a very complex phenomenon in electronic 
component systems and has been identified as one prominent degradation mechanism for 
surface mount solder joints in the stockpile. TMF is caused by different coefficients of 
thermal expansion (CTE) of the materiais in the package. combined with changes in the 
ambient temperature. In this case different CTES result in cyclical strain in the assembly. 
and this strain is concentrated almost entirely in the solder because it is the most 
deformable portion of the system. Since solder alloy is at a significant fraction of its 
melting point even at room temperature, the cyclical strain enhances mass difision and 
cause dramatic changes in the joint microstructure over time. As the microstructure 
changes, the joint weakens and eventually cracks when it can no longer withstand the 
strain. 

In order to precisely predict the TMF-related effects on the reliability of 
electronic components in weapons, a multi-level simulation methodology is being 
developed at Sandia National Laboratories. This methodology links simulation codes of 
continuum mechanics (JAS3D), rnicrostructural mechanics (GLAD). and rnicrostructural 
evolution (PARGRAIN) to treat the disparate length scales that exist between the 
macroscopic response of the component and the microstructural changes occurring in its 
constituent materials. JAS3D is used to predict strainhemperature distributions in the 
component due to environmental variable fluctuations. 

GLAD identifies damage initiation and accumulation in detail based on the spatial 
information provided by JAS3D. PARGIL41N simulates the changes of material 
microstructure, such as the heterogeneous coarsening in Sn-Pb solder. when the 
component’s service environment varies. 

In a complex electronic component system, such as the MC4352 MET hybrid 
unit which contains 348 solder joints, each individual JAS3D, GLAD and PARGWUN 
calculation is computationally intensive although only part of the TMF phenomenon is 
modeled. For example, running JAS3D on a single processor of Cray J90 to model strain 
distribution in MC4352 under TMF would take about 1000 CPU hours to finish one 

fatigue cycle, while many cycles must be simulated for a complete analysis. PARGRAIN 

would need a day or more on Sandia’s Intel Paragon supercomputer to model grain growth 

in a volume representative of a solder joint, using the fast Monte Carlo grain growth 

algorithm recently developed. The limits of computational power from conventional 

supercomputers prohibited the full implementation of this methodology in achieving 

realistic problem size, physical complexity, and numencal accuracy. Moving to multi- 
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teraflop computing is the only solution which can emble the practical interactions 

required for a fill-physics model of a complex electronic system. where TMF in solder 

joints must be assessed. The preiimin~ results from our exercises on the Teraflop 

machine at Sandia show that after fill implementations. JAS3D could gain 140-200 times 
speedup and the run time of PARGR41N can be shortened to only two hours. Similar 
performance increase is also expected for GLAD. With the support of US ASCI 
(Accelerated Strategic Computing Initiative) program and advanced algorithm 

development. the computational TMF model will enable scientists and engineers to 

anticipate reliability and performance problems in aging weapon components. This 

capability in turn will allow early identification of problems so that corrective 

actions can be efficiently implemented. 

. . . . . . ----- 

* Sandia ia a multiprogram laboratory operated by Sandia Corporation, 

a Lockheed Martin Company, for the United States Department of Energy 

under Contract DE-AC04-94AL85000. 
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SOLVING THE TRANSPORT EQUATION WITH QUADRATIC FINITE 
ELEMENTS: THEORY AND APPLICATIONS 

J. M. Ferguson, 

Lawrence Liverrnore National Laboratory 

Abstract 

At the 4th Joint Conferece on Computational Mathematics, we presented a paper 

introducing a new quadratic ftite element scheme (QFEM) for solving the transport 

equation. In the ensuing year we have obtained considerable experience in the application 

of this method, including solution of eigenvalue problems, transmission problems. and 
solution of the adjoint form of the equation as well as the usual forward solution. We will 

present detailed results, and will also discuss other refinements of our transport codes, 

particularly for 3-dimensional problems on rectilinear and non-rectilinear grids. 
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COMPUTATION TECHNIQUE FOR ELASTIC-PLASTIC FLOWS 
WITH ACCOUNT OF MATERIAL DESTRUCTION AND 

FRAGMENTATION 

A. V. Gorodniche\, G. P. %rninov, Yu. V. Yanilkin. 

RFNC-VNIIEF, Russia 

Abstract 

The paper gives the description of the Lagrangian-Eulerian technique implemented 

in the EGAK program set [1] and intended for flow simulation with account of elastic- 

plastic properties of materials. The technique is intended for simulation of 2D flows in 

multicomponent media whose essential feature is the presence of large deformations. To 

calculate contact boundaries, the concentration technique is used. 

Both simplest models based on the instant destruction with achieving critical 
tensile stress and more complex models are used to calculate material destruction. The 

latter include equations for parameters characterizing the degree of material porosity. 

To calculate the process of fragmentation of the destructed material. concepts 
developed in the works by Grady [2] and Ivanov and others [3] were considered. 

Computation results are given for several problems: the problem of punching a 

two-layer aluminum and textolite barrier by a steel ball; impact of two copper plates; 

punching a plastic material barrier by a steel ball, etc. Fra~entation computation 

techniques were tested on the last problem. 

Computation results are compared to analytical solutions. experiment data and 
results of computations using other techniques. The results of all computation runs are in 

good agreement with analytical solutions and experiment data. 

Reference 

1. Yanilk.i.n Yu.V., Shanin A.A., Kovalev N. P., Gavrilova E. S., Gubkov E. V., Darova 

N. S., Dibirov O. A.. Zharova G. V., Kahnanovich A. I., Pavlusha I. N., %rnigulin M. S., 

Simonov G. P., Sin’kova O. G., Sotnikova M. G., Tarasov V.I., Toropova T.A. EGAK 

Program Set for Computation of 2D Multicomponent Medium Flows.// VANT, 

ser. MMFP, iss.4, 1993. 

2. Grady D.E. Local Inertial Effects in Dynamic Fragmentation // J. Appl.Phys.. 1985, 

v.53, No.1, pp.322-325. 

3. Ivanov A. G., Rayevskii V. A., Vorontsova 0.S. Material Fragmentation during 
Explosion. // Fizika Goreniya i Vzryva, 1995, v.3 1, No.2. 
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PROVIDING SCALABLE SYSTEM SOFTWARE FOR HIGH-END 
SIMULATIONS 

D. Greenberg, 

Sandia National Laboratories 

Abstract 

Detailed, full-system, complex physics simulations requiring 10A1 5 flops and 

terabytes of data have been shown to be feasible on systems containing thousands of 
processors. In order to manage these computer systems it has been necessary to create 

scalable system services. In this talk Sandia’s research on scalable systems will be 

described. The key concepts of low overhead data movement through portals and of 

flexible services through multi-partition architectures will illustrated in detail. The talk 

will conclude with a discussion of how these techniques can be applied outside of the 

standard monolithic MPP system. 

27 

-—— . . . . - . . . .-. -— —-— .—— —- 



MATHEMATICAL METHODS FOR PROTE~T SCIENCE 

W. Hart. S. Istrail. J. Atkins. 

Sandia National Laboratories 

Abstract 

Understanding the structure and fimction of proteins is a fundamental endeavor in 

molecular biology. Currently, over 100,000 protein sequences have been determined by 

experimental methods. The three dimensional structure of the protein determines its 

function, but there are currently less than 4,000 structures known to atomic resolution. 

Accordingly, techniques to predict protein structure from sequence have an important 

role in aiding our understanding of the Genome and the effects of mutations in genetic 

disease. We describe current efforts at San&a to better understand the structure of 

proteins through rigorous mathematical analyses of simple lattice models. Our efforts 
have focused on two aspects of protein science: mathematical structure prediction. and 

inverse protein folding. 

A variety of methods have been proposed to predict the three-dimensional 

structure of proteins from their amino acid sequence. Very few of these methods provide 

the user with a measure of cofildence in the predicted structure. We have developed 

algorithms that generate protein structures in linear time whose energy is guaranteed to be 

within a fixed fraction of the energy of the optimal protein structure. Our analysis has 

focused on variants of the hydrophobic-hydrophilic model (Dill 1985), which abstracts 

the dominant force of protein folding: the hydrophobic interaction. The protein is 

modeled as a chain of amino acids of length n which are of two types: H (hydrophobic, 
i.e., nonpolar) and P (hydrophilic, i.e., polar). 

Although a variety of methods like these have been proposed to perform structure 
prediction, this problem has been difficult to solve exactly in a robust manner. In fact. it is 

still not known whether there exists an efficient algorithm for predicting the structure of a 

protein from its amino acid sequence alone. This observation has prompted us to 
characterize the computational complexity of protein structure prediction in simple lattice 

models. We have shown that a two broad classes of structure prediction problems are 

NP-hard. The first illustrates how structure prediction can be NP-hard for any reasonable 

lattice. The second illustrates how structure prediction can be NP-hard for a broad class 

of Lennard-Jones-like energy potentials. 

Inverse protein folding is a complementary problem to structure prediction. It 

concerns the identification of an amino acid sequence that folds to a given structure. 

Sequence design problems attempt to avoid the apparent difficulty of inverse protein 
folding by defining an energy that can be minimized to fmd protein-like sequences. We 
have evaluated the practical relevance of two sequence design problems by analyzing their 

computational complexity. Our analysis shows how sequence design problems can fail to 
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reduce the difficul~ of the inverse protein folding problem. and highlights the need to 

analyze these problems to evaluate their practical relevance. 



MODELING BY VALUE IIMPLEMENTED IN PRIZMA CODE 

Ia. Z. Kandiev and G. N. Malyshkin, 

RFNC-VNIITF, Russia 

Abstract 

PRIZMA code was intended for Monte Carlo simulation of linear radiation transfer 

problems. The code has broad capabilities to describe geometry, sources, material 

composition, obtain specified results. There is a capability to calculate path of particles 
of different types (neutrons, photons, electrons, positrons and heavy charged particles) 

taking into account their transmutations. Scheme of modeling by value [2] was 
implemented to solve the problems which require calculation of functional related to 

small probabilities (for example, problems of protection against radiation, problems of 
detection, etc.). The scheme enables to adapt algorithm of trajectory building to the 

problem peculiarities. 

Main components of the developed technique are the following. 

Problem of any complexity can be presented in the form of combination of 

(elementary) problems with simpler relations between the source and detector. Totally 

four classes of elementary problem were defined: 

1. Radiation propagation in optically thick medium. 

2. Radiation propagation in optically transparent medium. 

3. Problem of detection using detector located in vacuum or absorber. 

4. Problem of detection using detector located in emitting or scattering 

medium. 

Schemes of non-analogous modeling and principles of building approximate value 

function and appropriate non-analogous distributions were selected for each class of 

problems. 

Calculation of a specific problem is performed in the following way: problem 

conditions are analyzed in order to understand peculiarities of the problem: based on the 

peculiarities initial problem is split into elementary ones, each falling into one of four 
classes; for each elementary problem approximate solution is built using appropriate 

procedures and, if necessary, parameters of appropriate non-analogous distributions are 
determined; modeling scheme obtained is described by initial data in addition to problem 

conditions and calculation is performed. 

References 

1. Ia.Z. Kandiev, E.S. Kuropatenko, I.V. Lifanova et al. Monte-Carlo 

Calculations of Particle Interaction with Matter in PRIZMA Code. Theses of 

presentations at III Scientific Conference on Protection against Ionizing Radiation at 

Nuclear Facilities. 

30 



- Tbilisi. 1981, p. 24. 

2. J. Spanier. Z. Gelbard. Monte-Carlo Method and Neutron Transport Problems. 

Moscow. Atomizdat, 1972. p. 207 
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MONTE-CARLO SIMULATION OF BIOLOGICAL PROTECTION AT 
REPETITIVE PULSE ELECTRON ACCELERATOR 

Ia. Z. Kandiev and V. V. Plokhoy. 

RFNC-VNIITF, Russia 

Abstract 

Bremsstrahlung dose rate was calculated. Bremsstrahlung results from the interaction 

of electron beam of 1 MeV accelerator operating in repetitive pulse mode with the foil of a 

beam-exit hole and layer of air where beam is decelerated behind biological protection. 

It is shown that high repetition frequency (-500 Hz) of pulses of accelerated 

electrons leads to -100cm width of concrete wall necessary to ensure personnel 

protection against radiation. 

Technique is described enabling Monte-Carlo simulation of bremsstrahlung dose 

behind the obstacle with large optical thickness. This technique provides estimates with 

rather small dispersion in acceptable run time. Calculations were performed using 

PRIZMA code [1] which allows to consider the complete problem statement taking into 

account combined electrons and photons transport in the real geometry. 
To verifi the results obtained, gamma-radiation dose from 60C0 isotope source 

scattered by atmospheric air was calculated at a great distance fi-om the source for 

geometry described in [2]. Calculation results are compared with “benchmark” experiment 

results, thus enabling to test the technique developed to estimate bremsstrahlung dose 

behind biological protection of the accelerator. 

With the same purpose technique was tested for calculation of bremsstrahlung yield 

and energy-angular distribution of photons by comparing measurement results given in [3] 

with calculation results obtained using PRIZMA code. 

References: 

1. Ya.Z. Kandiev, E.S. Kuropatenko, I.V. Lifanova et al., Theses of presentations at 

the III Scientific Conference on Protection against Ionizing Radiation at Nuclear 

Facilities. Tbilisi, Tbilisi State University, 1981, p. 24. 

2. R.R. Nason, J.K. Shultis, R.E. Saw and C.E. Clifford, “A Benchmark Gamma-Ray 

SkyShine Experiment”, Nucl. Sci. Eng,, 79,404-416, 1981. 

3. D.H. Rester, W.E. Dance and J.H. Derrickson, “Thick Target Bremsstrahiung 

Produced by Electron Bombardment of Targets Be, Sn and Au in the Range 0.2- 

2.8 MeV”, Journ. Appl. Phys., vol. 41, #6, pp.2682-2692, (1970). 
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NUMERICAL SIMULATION OF EXPERIMENTS WITH FUEL PELLETS 
AT PULSE REACTOR FACILITY 

Ia. Z. Kandiev and R. M. Kozybayev. 

RFNC-VNIITF, Russia 

Abstract 
To solve the problems related to numerical simulation of experiments performed at 

pulse reactors, PRIZMA-D code which is a modification of the basic PRIZMA code was 
developed at VNIITF. 

Peculiarity of this code is in a special source - fission points distributed in 
eigenfunction in the reactor core. To diminish constraints on applying non-analogous 
simulation, process of determining g source is distinguished from the process of modeling 
trajectories to obtain necessary results. This structure of calculation cycle enables to 
increase effectiveness of calculations. In addition, special method of modeling trajectories 
of the particles implemented in PRIZMA code enables to obtain correlated results of 
several problem versions during one calculation. To illustrate the code capabilities. 
problems are considered related to numerical simulation of experiments with fhel pellets 
at the pulse reactor. 
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AN 8-NODE TIXRAHEDRAL FINITE ELEMENT SUITABLE FOR 
EXPLICIT TRANSIENT DYNAMIC SIMULATIONS 

S. W. Key, M. W. Heinstein, C. M. Stone, 

Sandia National Laboratones 

Abstract 

Considerable effort has been expended in perfecting the algorithmic properties of 

8-node hexahedral finite elements. Today the element is well understood and performs 

exceptionally well when used in modeling three-dimensioml explicit transient dynamic 

events. However, the automatic generation of all-hexahedral meshes remains an elusive 

achievement. The alternative of automatic generation for all-tetrahedral meshes is a reality. 

Unfortunately. in solid mechanics the 4-node linear tetrahedral finite element is a 

notoriously poor performer, and the 10-node quadratic tetrahedral ftite element while a 

better performer numerically is computationally expensive. To use the all-tetrahedral 

mesh generation extant today, we have explored the creation of a quality 8-node 
tetrahedral finite element (a four-node tetrahedral finite element enriched with four rnid- 

face nodal points). 

The derivation of the element’s gradient operator, studies in obtaining a suitable mass 

lumping and the element’s performance in applications are presented. In particular. we 

examine the 8-node tetrahedral ftite element’s behavior in longitudinal plane wave 

propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar 
impacts. The element only samples constant strain states and, therefore, has 12 hourglass 

modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite 

element. Given automatic all-tetrahedral meshing, the 8-node. constant-strain tetrahedral 
finite element is a suitable replacement for the 8-node hexahedral finite element and “hand- 

built” meshes. 

34 



THE ENERGETIC ALPHA PARTICLE TRANSPORT METHOD (EATM) 

R. C. Kirkpatrick, 

Los Alamos National Laboratory 

Abstract 

There have been several methods applied to the problem of energetic (e.g.. 14.1 

MeV DT) alpha particle transport in fision plasmas as well as heavy ion transport in 

high-Z radiation converters for ion beam fusion targets. In addition. the maggetic 

confinement fusion community has treated the problem of transport in the presence of 

magnetic fields. However, the problem of energetic charged particle transport in a 

dynamic magnetized plasma has been inadequately explored. The research code EATM is 

a first attempt to find an efficient method of treating the transport of energetic charged 

particles in a dynamic magnetized (MHD) plasma for which the mean free path of the 

particles ahd the Larmor radius may be long compared to the gradient lengths in the 
plasma. The intent is to span the range of parameter with the efficiency and accuracy 
thought necessary for experimental analysis and design of magnetized fision targets. 

One of the eariest examples of such targets is the Sandia National Lab Phi-target in 

1977. However, about the same time Los Alamos was exploring the Fast Liner concept. a 

larger cylindrical version. 

More recently, Los Alamos and the All-Russia Scientific Institute for 

Experimental Physics have collaborated on the MAGO experiments that are intended to 

study target plasma formation for magnetized target fi.tsion (MTF). 

EATM uses some piecewize analytic solutions and transformations to build 

transport matricies for single computational cells, and then uses these matricies in a way 

similar to equations of state or opacities to effect the transport throughout the 

computational mesh. This approach should be most applicable to codes with fixed 

orthognal meshes such as Eulerian algorithms or AMR codes. 
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TIME DEPENDENT VIEW FACTOR METHODS 

R. C. Kirkpatrick, 

Los Alamos National Laboratop 

Abstract 
View factors have been used for treating radiation transport between opaque 

surfaces bounding a transparent medium for several decades. However, in recent years 
they have been applied to problems involving intense bursts of radiation in enclosed 
volumes such as in the laser fusion hohlraums. In these problems, several aspects require 
treatment of time dependence. These will be discussed and some examples will be 
provided. Also, the limitations of view factor mathods will be discussed. 
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IMPLEMENTATION OF NUMERICAL SIMULATION TECHNIQUES ~T 
ANALYSIS OF THE ACCIDENTS IN COMPLEX TECHNOLOGICAL 

SYSTEMS 

G. S. IUishin, V. E. Seleznev, V. V. Aleoshin, 

RFNC-VNIIEF, Russia 

Abstract 

Gas industry enterprises such as main pipelines , compressor gas transfer 

stations, gas extracting complexes belong to the energy intensive industry. Accidents 

there can result into the catastrophes and great social, environmental and economic losses. 

hnually, according to the official data several dozens of large accidents take place at the 

pipes in the USA and Russia. That is why prevention of the accidents, analysis of the 

mechanisms of their development and prediction of their possible consequences are acute 

and important tasks nowadays. The accidents reasons are usually of a complicated 

character and can be presented as a complex combination of natural, technical and human 

factors. 

Mathematical and computer simulations are safe, rather effective and 

comparatively inexpensive methods of the accident analysis. It makes it possible to 

analyze different mechanisms of a failure occurrence and development, to assess its 

consequences and give recommendations to prevent it. Besides investigation of the failure 

cases, numerical simulation techniques play an important role in the treatment of the 

diagnostics results of the objects and in further construction of mathematical prognostic 

simulations of the object behavior in the period of time between two inspections. 

While solving diagnostics tasks and in the analysis of the failure cases, the 

techniques of theoretical mechanics, of qualitative theory of differential equations. of 

mechanics of a continuous medium, of chemical macro-kinetics and optimizing techniques 

are implemented in the Conversion Design Bureau #5 (DB#5). Both universal and special 

numerical techniques and software (SW) are being developed in DB#5 for solution of 

such tasks. Almost all of them are calibrated on the calculations of the simulated and fidl- 

scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth 

noting that in the long years of work there has been established a fruitfi.d and effective 

collaboration of theoreticians, mathematicians and experimentalists of the institute t o 

solve such tasks. 
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A TRANSPORT MODEL FOR COMPUTER SIMULATION OF 
WILDFIRES 

R. Linn. 

Los Alamos National Laboratory 

Abstract 

Realistic self-determinin g simulation of wildfires is a difficult task because of a 

large variety of important length scales (including scales on the size of twigs or grass and 

the size of large trees), imperfect data. complex fluid mechanics and heat transfer. and 

very complicated chemical reactions. We use a transport approach produce a model that 

exhibit a self-determining propagation rate. The transport approach allows us to represent 

a large number of environments such as those with nonhomogeneous vegetation and 

terrain. We account for the microscopic details of a fire with macroscopic resolution by 

dividing quantities into mean and fluctuating parts similar to what is done in traditional 

turbulence modeling. These divided quantities include fuel, wind, gas concentrations, and 

temperature. Reaction rates are limited by the mixing process and not the chemical 

kinetics. We have developed a model that includes the transport of multiple gas species. 

such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and 

other stationary solids and liquids. From this model we develop a simplified local burning 

model with which we perform a number of simulations that demonstrate that we are able 

to capture the important physics with the transport approach. With this simplified model 

we are able to pick up the essence of wildfue propagation. including such features as 

acceleration when transitioning to upsloping terrain. deceleration of fire fronts when 

they reach downslopes, and crowning in the presence of high winds. 
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ON SIMULATING FLOW WITH MULTIPLE TIME SCALES USING A 
METHOD OF AVERAGES 

L.G. Margoiin, 

Los Alamos National Laboratory 

Abstract 

We present a new computational method based on avemging to efficiently 

simulate certain systems with multiple time scales. We first develop the method in a 

simple one-dimensional setting and employ linear stability analysis to demonstrate 

numerical stability. We then extend the method to multidimensional fluid flow. Our 

method of averages does not depend on explicit splitting of the equations nor on modal 

decomposition. Rather we combine low order and high order algorithms in a generalized 

predictor-corrector framework. We illustrate the methodology in the context of a shallow- 

fluid approximation to an ocean basin circulation. We fmd that our new method 

reproduces the accuracy of a filly explicit second-order accurate scheme. while costing 

less than a first-order accurate scheme. 
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HEXAHEDRAL MESH GENERATION VIA THE DUAL ARRANGEMENT 
OF SURFACES 

S. A. Mitchell and T. J. Tautges, 
Sandia National Laboratories 

Abstract 

Given a general three-dimensional geometry with a prescribed quadrilateral surface 

mesh, we consider the problem of constructing a hexahedral mesh of the geometn whose 

boundary is exactly the prescribed surface mesh. Due to the specialized topology of 

hexahedra. this problem is more difficult than the analogous one for tetrahedral. Folklore 

has maintained that a surface mesh must have a constrained structure in order for there to 

exist a compatible hexahedral mesh. 

However, we have a proof that a surface mesh need only satis~ mild parity 

conditions. depending on the topology of the three-dimensional geometry, for there to 

exist a compatible hexahedral mesh. The proof is based on the realization that a 

hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh 

is dual to the arrangement of cumes bounding these surfaces. The proof is constructive 

and we are currently developing an algorithm called Whisker Weaving (WW) that mirrors 

the proof steps. 

Given the bounding curves, WW builds the topological structure of an arrangement 

of surfaces having those curves as its boundary. WW progresses in an advancing front 

manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. 

Also, after the arrangement is constructed, additional surfaces are inserted to separate 

features, so e.g. no two hexahedra share more than one quadrilateral face. 

The algorithm has generated meshes for certain non-trivial problems. but is 

currently unreliable. We are exploring strategies for consistently selecting which portion 

of the surface arrangement to advance based on the existence proof. This should lead us 

to a robust algorithm for arbitrary geometries and surface meshes. 
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3D UNSTRUCTURED-MESH RADIATION TRANSPORT CODES 

J. Morel, 

Los Alamos National Laborato~ 

Abstract 

Three unstructured-mesh radiation transport coces are currently being developed 

at Los Alamos National Laborato~. The first code is ATTILA, which uses an 

unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular 

discretization, standard muhigroup energy discretization, and linear-discontinuous spatial 

differencing. ATTILA solves the standard first-order form of the transport equation using 
source iteration in conjunction with diffision-synthetic acceleration of the within-group 

source iterations. DANTE is designed to run primarily on workstations. The second 

code is DANTE. which uses a hybrid ftite-element mesh consisting of arbitrary 

combinations of hexahedm wedges, pyramids, and tetrahedral. DANTE solves several 

second-order self-adjoint forms of the transport equation including the even-parity 
equation, the odd-parity equation, and a new equation called the self-adjoint angular flux 

equation. 

DANTE also offers three angular discretization options: $S_n$ (discrete- 

ordinates), $P_n$ (spherical harmonics), and $SP_n$ (simplified spherical harmonics). 

DANTE is desi~ed to run primarily on massively parallel message-passing machines. 
such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, 

which uses the same hybrid finite-element mesh as DANTE, but solves the standard first- 

order form of the transport equation rather than a second-order self-adjoint form. 

DANTE uses a standard $S_n$ discretizaion in angle in conjunction with 

trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the 

within-group source iterations. PERICLES was initially desighed to run on workstations. 

but a version for massively parallel message-passign machines will be built. The three 

codes will described in detail and computational results will be presented. 
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RECENT WORK ON MATERIAL INTERFACE RECONSTRUCTION 

S. J. h’fosSO and B. K. Swartz. 

Los Alamos National Laboratory 

Abstract 

For the last 15 years, many Eulerian codes have relied on a series of piecewise 

linear interface reconstruction algorithms developed by David Youngs. In a typical 

Youngs’ method, the material interfaces were reconstructed based upon nearby cell values 

of volume fractions of each material. The interfaces were locally represented by linear 

segments in two dimensions and by pieces of planes in three dimensions. The first step 

in such reconstruction was to locally approximate an interface normal. In Youngs’ 3 D 

method, a local gradient of a cell-volume-fraction fimction was estimated and taken to be 

the local interface normal. A linear interface was moved perpendicular to the now known 

normal until the mass behind it matched the material volume fraction for the cell in 

question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn’t 

accurately match that of linear material interfaces. Moreover, curved material interfaces 
were also poorly represented. 

We will present some recent work in the computation of more accurate interface 

normals, without necessarily increasing stencil size. Our estimate of the normal is made 
using an iterative process that, given mass fractions for nearby cells of known but 

arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically - like 

Newton’s method - in principle). The method reproduce a linear interface in both 
orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd- 

order accurate, with a 1st-order accurate normal for curved interfaces in both two and 

three dimensional polyhedral meshes. Recent work demonstrating the interface 
reconstruction for curved surfaces will be discussed. 
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NUMERICAL SIMULATION OF TURBULENT MIXING IN 2D FLOWS 

V. V. Nikiforov. Yu. V. Y“anilkin. G. V. Zharova. Yu. A. Yudin. 

RFNC-VNIIEF. Russia 

Abstract 

The paper describes 2D multiparameter model of turbulent mixing developed 

within the EGAK program package. The model use nine independent variables for which 

evolution equations are solved. The variables are four components of Reynolds tensor. 

full turbulent energy, viscous dissipation rate of turbulent energy, two components of a 

velocity vector of turbulent mass flow and squared density pulsation. The model is the 

two-dimensional generalization of the one-dimensional model of VIKHR’ technique. 

The results of 1 D computations using muhiparameter turbulent mixing model 

under gravitational instability are given. These results are in full agreement with 

computation results using VIKHR’ technique. 

The results of computations of lD problem of shift instability are given in 

comparison with already known experiment results and computation results using k-& 

model of turbulent mixing. Our results are in good agreement both with experimental 

results and results obtained with k-& model. 

The paper also includes 2D computation results of modeling instability growth at 

the interface of two different -density gases and liquids and their subsequent turbulent 
mixing. Results are being compared to experiment data obtained in laboratories headed by 

Meshkov and Kucherenko. Additionally, the results are also compared to the results 

obtained using k-& model of turbulent mixing and results of direct numerical simulations 

without any turbulence models earlier conducted using other techniques within EGAK 

program set. Good agreement of computation results using the proposed technique with 

experiment data and results using other numerical techniques is achieved. 

The calculations carried out showed that the multiparameter model has its 

advantages over other models. the main of them is that it use the same semi-empirical 

constants for all flows being simulated. 
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SEISMIC IMAGING USING FINITE-DIFFERENCES AND PARALLEL 
COMPUTERS 

C. C. Ober. 
Sandia National Laboratories 

Abstract 

A key to reducing the risks and costs of associated with oil and gas exploration is 

the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico 

and overthrust regions in U.S. onshore regions. Prestack depth migration generally yields 

the most accurate images, and one approach to this is to solve the scalar wave 

equation using ftite differences. 

Current industry computational capabilities are insufficient for the application of 

finite difference, 3-D, prestack, depth migration algorithms. A 3-D data set can be several 

terabytes in size, and the multiple runs necessary to refine the velocity model may take 

many years. The oil companies and seismic contractors need to be able to perform 

complete velocity field refinements in weeks and single iterations overnight. High 

performance computers and state-of-the-art algorithms and software are required to meet 

this need. 

As part of an ongoing ACTI project funded by the U.S. Department of Ener~. 
we have developed a finite difference, 3-D prestack, depth migration code. The goal of 

this work is to demonstrate that massively parallel computers can be used efficiently for 

seismic imaging, and that sut%cient computing power exists (or soon will exist) to make 

finite difference, prestack, depth migration practical for oil and gas exploration. 

We have had to address several problems to get an efficient code for the Intel 

Paragon. These include efficient 1/0, el%cient parallel tridiagonal solves, and high single- 

node performance. Furthermore, to provide portable code we have been restricted to the 

use of high-level programming languages (C and Fortran) and interprocessor 

communications using MPI. We have been using the SUNMOS operating system, which 

has affected many of our programming decisions. 

We will present images created from two verification datasets (the Marmousi 
Model and the SEG/EAEG 3D Salt Model). Also, we will show recent images from real 

datasets, and point out locations of improved imaging. Finally, we will discuss areas of 

current research which will hopefully improve the image quality and reduce 

computational costs. 
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MOLECULAR DYNAMICS COMPUTER SIMULATION OF 
PERMEATION IN SOLIDS 

P. I. Pohl, G. S. Heffelfinger. D. K. Fisler and D. M. Ford. 

Sandia National Laboratories 

Abstract 

In this work. we apply classical mechanics and molecular dynamics to better 
understand the phenomena of atomic and molecular movement in dense and slightly 

porous solids. Lennard-Jones interaction potentials are used and supplemented with 

quantum mechanical adjustments where necessary. Novel simulations techniques sucn as 
Grand Canonical Molecular Dynamics, transition state theory and diffusion pathways are 

utilized to understand permeation, diffusion and difiisive pathways. Applications of 

this theoretical work include development of membranes for gas separations, predictions 

of oxygen permeation and subsequent oxidation in support of materials degradation 

research and understanding cation diffbsion in mediorite minerals to assess the probability 

of organic life on the planet mars. 
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PARALLEL MONTE CARLO TRANSPORT MODELING IN THE 
CONTEXT OF A TIME-DEPENDENT, THREE-DIMENSIONAL MULTI- 

PHYSICS CODE 

R. J. Procassini, 

Lawrence Livermore National Laboratory 

Abstract 

The free-scale. multi-space resolution that is envisioned for accurate simulations 
of complex weapons systems in three spatial dimensions implies flop-rate and memory- 

storage requirements that will only be obtained in the near future through the use of 

parallel computational techniques. Since the Monte Carlo transport models in these 

simulations usually stress both of these computational resources. they are prime 

candidates for parallelization. The MONACO Monte Carlo transport package, which is 

currently under development at LLNL, will utilize two types of parallelism within the 

context of a multi-physics design code: decomposition of the spatial domain across 
processors (spatial parallelism) and distribution of particles in a given spatial subdomain 

across additional processors (particle parallelism). This implementation of the package 

will utilize explicit data communication between domains (message passing). Such a 

parallel implementation of a Monte Carlo transport model will result in non-deterministic 

communication patterns. The communication of particles between subdomains during a 

Monte Carlo time step may require a significant level of effort to achieve a high parallel 

efficiency. 

This work is performed under the auspices of the U.S. Department of Ener~ at the 

Lawrence Livermore National Laboratory under Contract Number W-7405 -Eng-48. 
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CALCULATION TECHNIQUE FOR 3-D GAS DYNAMICS PROBLEMS 
ON NONREGULAR LAGRANGIAN GRIDS 

V. V. Rasskazova, 

RFNC-VNIIEF. Russia 

Abstract 

The technique offered uses both Lagrangian gas dynamics equations and a 

difference calculation grid connected with a material and moving with it. 

The space is filled with figures as computational grid meshes without folds and 

gaps by nonre@ar method using convex Dirichlet-Voronoy polyhedrons at initial 
moment of integration. 

To avoid Lagrangian grid calculational distortions during numerical experiment the 

means of presewing convex trihedral angles are used together with a local grid 

reconstruction by cutting separate meshes or by spating two neiboring. 

The technique and its software can be used for solving problems in the following 

practical areas: 

- ecology problems which need to know the material particles location 

and pathway; 
- calculation of directed explosions when it is necessary to know and be able to 

define the direction of material-ground being burst out; 

- meteorology problems; 

- calculation of body co-impact in space and their penetration within 

each other. 

The problems for demonstration of this method capabilities are offered. 
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AN IMPLICIT FAST FOURIER TRANSFORM METHOD FOR 

INTEGRATION OF THE TIME DEPENDENT SCHRODINGER EQUATION 

M. E. Riley. 

Sandia National Laboratories, 

and 

A. B. Ritchie. 
Lawrence Livermore National Laboratory 

Abstract 

The potential of the new massively-parallel-processor computers to perform “bare- 

knuckled” numerical solutions of difflcuh full-dimensional problems prompted us to 

investigate some modem ftite-difference methods for solution the time-dependent 

Schrodinger equation. One of these is the exponentiated split operator procedure, based on 

the use of the fast Fourier transform, which has been successfully used for vibration-rotation 

spectral analysis and molecular dynamics. 
Electronic processes such as charge transfer, excitation, and ionization involve the 

Coulomb interaction which makes the numerical representation of the wave function more 

difllcult than in the previous molecular dynamics studies. We have found that the 

exponentiated split operator procedure is subject to difficulties in energy conservation when 

solving the tirne-dependent Schrodinger equation for Coulombic systems. Stability with 
respect to time increment variations is a problem for these interactions. We have rearranged 

the kinetic and potential energy terms in the temporal propagator of the finite difference 

equations to find a propagation algorithm for three dimensions that looks much like the 

Crank-Nicholson and alternating direction implicit methods for one- and two-space- 

dirnensional partial differential equations. Stability is greatly improved. We report 

comparisons of this novel implicit split operator procedure with the conventional 

exponentiated split operator procedure on hydrogen atom solutions. 
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PROPAGATION OF AN ULTRA-SHORT, INTENSE LASER IN A 

RELATIVISTIC FLUID 

A. B. Ritchie and C. D. Decker, 

Lawrence Livermore National Laboratory 

Abstract 

A Maxwell-relativistic fluid model is developed to describe the propagation of an 

ultrashort, intense laser pulse through an underdense plasma. The model makes use of 

numerically stabilizing fast Fourier transform (FFT) computational methods for both the 
Maxwell and fluid equations. and it is benchmarked against particle-in-cell (PIC) 
simulations. 

Strong fields generated in the wake of the laser are calculated, and we observe 
coherent wake-field radiation generated at harmonics of the plasma frequency due to 

nonlinearities in the laser-plasma interaction. For a plasma whose density is 10VO of 

critical, the highest members of the plasma harmonic series begin to overlap with the first 

laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and 

plasma frequencies are assumed to be separable, ceases to be a usefi.d approximation. 
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COMPUTATIONAL MODELING OF JOINT U. S.-RUSSI~T 
EXPERIMENTS RELEVANT TO MAGNETIC 

COMPRESSIONMAGNETIZED TARGET FUSION (MAGOMIT) 

P. T. Sheehey. R. J. Faehl. R. C. Kirkpatrick, and I. R. Lindemuth. 
Los Alamos N’ational Laboratory 

Abstract 

Magnetized Target Fusion (MTF) experiments, in which a preheated and 

ma~etized target plasma is hydrodynamically compressed to fision conditions, present 

some challenging computational modeling problems. Recently, joint experiments relevant 

to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic 

compression) have been performed by Los Alarnos National Laboratory and the All- 

Russian Scientiilc Research Institute of Experimental Physics (VNIIEF). Modeling of 

target plasmas must accurately predict plasma densities, temperatures, fields. and 

lifetime; dense plasma interactions with wall materials must be characterized. Modeling 

of magnetically driven imploding solid liners, for compression of target plasmas. must 

address issues such as Rayleigh-Taylor instability growth in the presence of material 

strength, and glide plane-liner interactions. 

Proposed experiments involving “liner-on-plasma” compressions to fusion 

conditions will require inte~ated target plasma and liner calculations. Detailed 

comparison of the modeling results with experiment will be presented. 

LA-UR-97-2291 
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MPDATA: A POSITIVE DEFINITE SOLVER FOR GEOPHYSICAL 
FLOWS 

P. K. Smolarkiewicz and L. G. Margolin. 
Los Akunos National Laboratory 

Abstract 

This paper is a review of MPDATA, a class of methods for the numerical 

simulation of advection based on the si~-preserving properties of upstream differencing. 

MPDATA was designed originally as an inexpensive alternative to flux-limited schemes 

for evaluating the transport of nonnegative thermodynamic variables (such as liquid water 

or water vapour) in atmospheric models. During the last decade, MPDATA has evolved 

from a simple advection scheme to a general approach for integrating the conservation 

laws of geophysical fluids on micro-to-planetary scales. The purpose of this paper is to 

summarize the basic concepts leading to a family of MPDATA schemes, review the 

existing MPDATA options, as well as to demonstrate the efficacy of the approach using 

diverse examples of complex geophysical flows. 
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ARCHITECTURE OF A MULTICOMPUTER’S COMMUTATION 
NETWORK AND OF DIFFERENCE GRID FOR COMPUTATIONAL 

PHYSICS PROBLEMS 

I. D. Sofionov, 

RFNC-VNIIEF, Russia 

Abstract 

One of the main reserves of increase of computer system performance is the wide 

calculating process paralleling when one large problem is being solved using a great 

number of PEs simultaneously. 

Evidently, the elllciency of paralleling process depends on a capability of an 

algorithm to be paralleled, as well as on specific features of architecture of a 

multiprocessor computer system in use. 

The presentation considers algorithms for solving evolutional problems in 

computational physics discretized over difference grids having the architecture of p- 

dimensional matrix, and peculiarities of these algorithm implementation on multiprocessor 

computer systems which have a commutation network either with matrix or hypercubic 

architecture. 

In particular, it is shown that with matrix architecture of a commutation network 

the loss of a middle load of PEs is inevitable if a number of PEs is large enough. With 

regard to this parameter a hypercubic commutation network has an advantage as 

compared to a matrix commutation network. Some theoretical estimations have been 

verified by solving test problems on multiprocessor supercomputers of several types. 
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3-D PARALLEL PROGRAM FOR NUMERICAL CALCULATION OF 

GAS DYNAMICS PROBLEMS WITH HEAT CONDUCTIVITY ONT 
DISTRIBUTED MEMORY COMPUTATIONAL SYSTEMS (CS) 

(Calculation results obtained on MP-3 CS, Meiko CS-2 and SP2) 

I. D. Sofronov. B. L. Voronin, O. I. Butnev. A. N. Bykov. 
A. M. Yerofeye}7, and A. I. Skripnik, VNIIEF. Russia 

D. Nielsen. Jr.. N. Medsen, R. Evans, and S. Brandon. 

Lawrence Liverrnore National Laboratory 

Abstract 

The aim of the work performed is to develop a 3D parallel program for numerical 

calculation of gas dynamics problem with heat conductivity on distributed memo~ 

computational systems (C S), satis~ing the condition of numerical result independence 

from the number of processors involved. 

Two basically different approaches to the structure of massive parallel 
computations have been developed. The first approach uses the 3D data matrix 

decomposition reconstructed at temporal cycle and is a development of parallelization 

algorithms for multiprocessor CS with shareable memory. The second approach is based 

on using a 3D data matrix decomposition 

not reconstructed during a temporal cycle. 

The program was developed on 8-processor CS MP-3 made in VNIIEF and was 

adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL 

staffs. 

A large number of numerical experiments has been carried out with different 

number of processors up to 256 and the efficiency of parallelization has been evaluated in 

dependence on processor number and their parameters. 
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ALEGRA--A MASSIVELY PARALLEL H-ADAPTIVE CODE FOR SOLID 
DYNAMICS 

R. M. Summers, M. K. Wong, E. A. Boucheron, J. R. Weatherby. 
Sandia National Laboratories 

Abstract 

ALEGRA is a multi-material, arbitrary-Lagrangian-Eulenm (ALE) code for solid 

dynamics designed to run on massively parallel (MP) computers. It combines the 

features of modem Eulerian shock codes. such as CTH. with modem Lagrangian structural 

analysis codes using an unstructured grid. ALEGRA is being developed for use on the 

teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of 

shock phenomena important to a variety of systems. 
ALEGRA was designed with the Single Program Multiple Data (SPMD) 

paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets 

a single sub-mesh with approximately the same number of elements. Using this approach 

we have been able to produce a single code that can scale from one processor to thousands 

of processors. 

A current major effort is to develop efficient, high precision simulation capabilities 

for ALEGRA, without the computational cost of using a global highly resolved mesh. 

through flexible, robust h-adaptivity of ftite elements. H-adaptivity is the dynamic 

refinement of the mesh by subdividing elements, thus changing the characteristic element 

size and reducing numerical error. This provides for increased resolution wherever and 

whenever higher precision is necessary to adequately simulate regions of large 

deformation and transient features such as shocks. burn fronts, and pressure stagnation 

areas. The h-adaptive version of ALEGRA is called HAMMER. 

We are working on several major technical challenges that must be met to make 

effective use of HAMMER on MP computers. One is el%cient parallelization of the 
basic refinement and unrefmement algorithms. Another is the development of dynamic 

load balancing techniques to prevent severe overloading of one or more processors as 

adaptive refinement progresses. Also, appropriate error estimators or refinement 
indicators must be developed for various physics. and how they should be applied in a 

multi-physics calculation must be determined. 
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EFFICIENT SINGLE SCATTER ELECTRON MONTE CARLO 

SIMULATION 

M. Svatos and J. Rathkopf. 

Lawrence Livermore National Laboratory 

Abstract 

A single scatter electron Monte Carlo code (SSMC). CREEP. has been written 

which bridges the gap between existing transport methods and modeling real physical 

processes. CREEP simulates ionization, elastic and bremsstrahiung events individually. 

Excitation events are treated with an excitation-only stopping power. The detailed nature 

of these simulations allows for calculation of backscatter and transmission coefficients. 

backscattered energy spectra, stopping powers, energy deposits, depth dose. and a 
variety of other associated quantities. Agreement of these quantities with experimental 

values will be shown and is generally excellent. 

One application of this code is the generation of probability distribution functions 

(PDFs) to describe the phase space of a single electron emerging from a sphere of a given 

material and radius. A library of data sets for such spheres (or “kugels”) is being 

computed for a variety of incident energies, material types, and sizes. These results are 

stored for subsequent sampling from another electron transport code, Steppenwolf. The 

goal of this work is to achieve extremely accurate transpofi results with a efficiency that 

is similar to condensed history methods. Comparisons of Steppenwolf with CREEP and 
condensed history codes will be shown. 

CREEP, and Steppenwolf, rely on sampling the Lawrence Livermore Evaluated 

Electron Data Library (EEDL) which has data for all elements with an atomic number 

between 1 and 100, over an energy range from approximately several eV (or the binding 

energy of the material) to 100 GeV. Compounds and mixtures may also be used by 

combining the appropriate element data via Bragg addltivity. 
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TRANSVERSE ISOTROPIC MODELING OF THE BALLISTIC 
RESPONSE OF GLASS REINFORCED PLASTIC COMPOSITES 

P. A. Taylor. 
Sandia National Laboratories 

Abstract 

The use of glass reinforced plastic (GRP) composites is gaining significant 

attention in the DoD community for use in armor applications. These materials typically 

possess a laminate structure consisting of up to 100 plies, each of which is constructed of 

a glass woven roving fabric that reinforces a plastic matrix material. Current DoD 

attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a 

polyester matrix material that forms each ply of a laminate structure consisting anywhere 

from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a 

reasomble approximation, transversely isotropic. When subjected to impact ad 

penetration from a metal fragment projectile. the GRP displays damage and failure in an 

anisotropic manner due to various mechanisms such as matrix cracking. fiber fracture and 

pull-out, and fiber-matrix debonding. 

In this presentation, I will describe the modeling effort to simulate the ballistic 
response of the GRP material described above using the transversely isotropic (TI) 

constitutive model which has been implemented in the shock physics code. CTH. The 

results of this effort suggest that the model is able to describe the delamination behavior 

of the material but has some difficulty capturing the in-plane (i.e.. transverse) response of 

the laminate due to its cross-weave fabric reinforcement pattern which causes a departure 

from transverse isotropy. 

Sandia is a multiprogram laboratory operated by Sandia Corporation. a 

Lockheed Martin Company, for the United States Department of Energy 

under Contract DE-AC04-94AL85000. 
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SPALLATION STUDIES ON SHOCK LOADED URANIUM 

D. L. Tonks. R. Hixson. R. L. Gustavsen. J. E. Vorthman. A. Kelly. A. K. Zurek. and W. 
R. Thissell, 

Los Akunos National Laboratory 

Abstract 

Uranium samples at two different purity levels were used for span strength 

measurements at three different stress levels. A 50 mm single-stage gas-gun was used to 

produce planar impact conditions using Z-cut quartz impactors. Samples of depleted 

uranium were taken from very high purity material and from material that had 300 ppm of 

carbon added. A pair of shots was done for each impact strength, one member of the pair 

with VISAR diagnostics and the second with soft recovery for metallographical 

examination. 

A series of increasing final stress states were chosen to effectively freeze the 

microstructural darnage at three places in the development to fidl span separation. This 

allowed determination of the dependence of span mechanisms on stress level and sample 

purity. 

This report will discuss both the results of the metallurgical examination of soft 

recovered samples and the modeling of the free surface VISAR data. The rnicrographs 

taken from the recovered samples show brittle cracking as the spallation ftilure 

mechanism. Deformation induced twins are plentifhl and obviously play a role in the 

spallation process. The twins are produced in the initial shock loading and, so, are 

present already before the fracture process begins. 

The 1 d characteristics code CHARADE has been used to model the free surface 

VISAR data. The spallation modeling is rnicromechanically based and involves brittle 

crack breakout, growth, and coalescence. Calculated free surface particle velocity profiles 

are compared with the data and conclusions drawn. The results show that the brittle crack 

model can explain the span features of the data. except for the very late time behavior. 

The late time behavior is more complicated because it involves close interactions and 

couplings between cracks. A preliminary modeling result for the 81 kbar shot is shown in 

Fig. 1. 
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APPLICATION OF CHAD HYDRODYNAMICS TO SHOCK-WAVE 
PROBLEMS 

H. E. Trease, P. J. O’Rourke, and M. S. S*OM. 
Los Alamos National Laboratories 

Abstract 

CHAD is the latest in a sequence of continually evolving computer codes written 

to effectively utilize massively parallel computer architectures and the latest grid 

generators for unstructured meshes. Its applications range horn automotive design issues 

such as in-cylinder and manifold flows of internal combustion engines, vehicle 

aerodynamics, underhood cooling and passenger compartment heating, ventilation. and air 

conditioning to shock hydrodynamics and materials modeling. 

CHAD solves the fidl unsteady Navier-Stoke equations with the k-epsilon 

turbulence model in three space dimensions. The code has four major features that 

distinguish it from the earlier IUVA code, also developed at Los Alarnos. First, it is based 

on a node-centered, finite-volume method in which, like finite element methods, all fluid 
variables are located at computational nodes. The computational mesh efficiently and 

accurately handles all element shapes ranging from tetrahedral to hexahedra. Second, it is 

written in standard Fortran 90 and relies on automatic domain decomposition and a 

universal communication library mitten in standard C and MPI for unstructured grids to 

effectively exploit distributed-memory parallel architectures. Thus the code is fully 

portable to a variety of computing platforms such as uniprocessor workstations, 

symmetric multiprocessors, clusters of workstations, and massively parallel platforms. 

Third, CHAD utilizes a variable explicitiimplicit upwind method for convection that 

improves computational efficiency in flows that have large velocity Courant number 

variations due to velocity or mesh size variations. Fourth, CHAD is designed to also 

simulate shock hydrodynamics involving multimaterial anisotropic behavior under high 

shear. 

We will discuss CHAD capabilities and show several sample calculations showing 

the strengths and weaknesses of CHAD. 
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ESTABLISHING CONFIDENCE IN COMPLEX PHYSICS CODES: 
ART OR SCIENCE? 

T. Trucano. 

Sandia National Laboratones 

Abstract 

The ALEGRA shock wave physics code. currently under development at Sandia 

National Laboratories and partially supported by the U. S. Advanced Strategic 

Computing Initiative (ASCI), is generic to a certain class of physics codes: large. multi- 

application, intended to support a broad user community on the latest ,generation of 

massively parallel supercomputer, and in a continual state of formal development. To say 

that we have “conildence” in the results of ALEGIU4 is to say something different than 

that we believe that ALEGIU4 is “predictive.” It is the purpose of this talk to illustrate 

the distinction between these two concepts. I elect to perform this task in a somewhat 

historical manner. I will summarize certain older approaches to code “validation”. I view 

these methods as aiming to establish the predictive behavior of the code. These methods 

are distinguished by their emphasis on “local” information. I will conclude that these 

approaches are more art than science. It then will follow that newer approaches 

*This work performed at Sandia National Laboratories supported by the 

U. S. Department of Energy under contract number DE-AC04-94AL85000. 

59 

——. — .—. .-—. — —— —



DEVELOP~NT OF DIFFERENCE SCHEMES FOR COMPUTING 
MULTIDIMENSIONAL NON-STATIONARY ELASTIC-PLASTIC 

FLOWS ON THE BASE OF THE MUTUAL TRANSITION LAW FOR 
KINETIC AND INTERNAL ENERGIES 

V. B. Vershinin. V. I. Delov. O. V. Senilova, I. D. Sofronov 
RFNC-VNIIEF, Russia 

Abstract 

The paper proposes the approach to develop conservative difference-differential 
equations describing non-stationary elastic-plastic flows via Lagrangian variables. The 
given technique is the outgrowth of 2D technique of constructing spatial approximations 
of gas dynamics motion equations. /1/, /2/ for elastic-plastic media. Its distinctive features 
are simplicity and quickness of obtaining difference motion equations which are close to 
equations obtained using variational approaches by their structure and quality. 

The proposed technique serves for elimination of one of the main drawbacks of 
Whilkins scheme in the case of axial symmetry related to nonconservation of fi,dl system 
energy. 

In the given paper the kinetic energy matrix deterrninin g the way of pressure 

gradient approximation is used in its canonical form being used traditionally in gas 
dynamic techniques. 

The paper includes difference formulas for strain rate tensor components and 
obtained difference approximations to compute derivatives of components of stress 
tensor deviator . 

There is an information about computation results using the developed difference 
scheme in which grid value distribution in time is used in the same manner as in “D’” 
technique /3/, time derivative being approximated with the second order. 

Obvious advantages of the developed difference scheme are shown for the 
problem of elastic membrane oscillations in comparison with the classic Whilkins scheme. 

Opposite to the difference scheme for gas-dynamic computations /4/ obtained 
using the same approach to the development of difference schemes, the scheme from the 
work /2/ and the difference scheme proposed here do not require iterations on the time 
step to achieve the second order accuracy in time. 

Reference 

1. Isayev V.N., Sofronov I.D. Development of Discrete Models for Gas Dynamics 

Equations on the Base of the Law of Mutual Transition of Kinetic and Internal 

Continuous Medium Energies. // VANT, Ser. Metodici i Programmy Chisl. Resh. 

Zadach Mat. Fiz., 1984, iss.1(15), pp.3-7. 
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2. Delo\ V.I.. Isaye\7 V.N.. Sofronov I.D. Conservative and Invariant Difference- 

Differential Representations of Gas Dynamics Equations in tial Symmetn Case./’ 
VANT, Ser. Metodici i Programrny Chisl. Resh. Zadach Mat. Fiz.. 1987. iss. 1. pp.3- 

10. 
3. Dmitriyev N. A.. Dmitriyeva L. V.. Malinovskaya E. V., Sofrono\r I.D. The Calculation 

Technique for Non-Stationary 2D Gas Dynamics Problems in Lagra.gian Variables. In 

the book: Theoretical Foundations and Development of Numerical Algorithms for 

Computational Physics Problems.~dited by Babenko K. I.- Moscow. Science 

Publishers , 1979, pp. 175-200. 

4. Caramana E.J.. Whalen P.P. (LANL). Scalable Compatible Energy and Entropy 

Conserving Hydrodynamics. Third Joint Conference on Computational Mathematics 

(JCCM3), 1995, Los Akimos. 
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NONREGULAR FREE-LAGRANGIAN “MEDUSA” TECHNIQUE 

S. G. Volko\, B. M. Zhogov. V. D. Malshakov. I. D. Sofionov 
RFNC-VNIIEF, Russia 

Abstract 
“Medusa” technique refers to 2D Lagrangian gas dynamics techniques on non- 

regular grids adapting to the nature of occuring processes. Using a universally accepted 
terminology we may refer it to a free-Lagrangian technique class. 

The paper gives a brief historic information, describes “Medusa” gas dynamics 
technique difference scheme, gives a list of physical processes being calculated, describes 
parallelization methods of calculating the problems on multiprocessor computational 
systems and gives calculation examples. 

The first part tells about “Medusa” technique development, about its 

implementation on different computers, tells about some interesting calculations 

performed by this technique and about modem technique implementation. 
The second part describes the problem digitization, the obtained difference 

equations, stresses the main technique peculiarities such as the use of mixed meshes and 

grid local interpolation. 

The third part gives the method of obtaining difference equations to solve a heat 

conductivity equation on a non-regular grid. Here an approximated method of solving the 

obtained system by means of balance iterations is give~ the one presenting good results 

even in case of iteration cut resulting from their great number. 

The forth part marks the technique peculiarities allowing to parallelize gas 

dynamics calculations. Different means of splitting the point sets in the problem for 
parallel calculations and the peculiarities of parallelization connected with this splitting 

are considered. 

The final part describes the technique application area and calculation results. 
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NUMERICAL SIMULATION OF CLOSE AND REMOTE ZONES OF 
ACCIDENT OUTBURST AND EXPLOSION 

Yu. V. Yanilkin. V. hT. Sofronov, V. I. Tarasov. V. P. Statsenko. 
V. N. Piskunov, N. P. Kovalyo\r, O. A. Dibirov. A. L. Stadnik. 

T. A, Toropova, G. G. Ivanova. A. A. Shanin. 

RFNC-VNIIEF, Russia 

Abstract 
The paper describes a 3D program package designed for numerical simulation of 

accident explosion and outburst dynamics and their consequences in a regional scale. The 
package is implemented in the fia.mes of TREK program complex. 

The simulation of a full-scale probiem involving accident outbursts is an intricate 
problem due both to a large number of physical processes to be taken into account and 
scale diversity of flows at different process stages. The package includes two stages of 
the considered process: the explosion cloud lifting to the height of stabilization and 
aerosole tranfer in atmosphere above an oro~aphically and thermally non-uniform 
underlaying surface. 

The simulation is based on a joint solution of the following physical processes: 
at the first stage 

- gas-dynamical flow of polydisperse environment; 
- turbulent agitation; 
- variation of aerosole particle disperse composition due to coagulation; 

at the second stage 

- atmosphere hydrothermodynamics; 
- particle transfer and turbulent diffhsion. 

The equation approximation is made in Decartes coordinate system on arbitrary in 

general case non-rectangular, Eulerian and Lagrangian-Eulerian grids. Such approach allows 

to use the grids most adapted to the considered flows: first, those accounting local 

orography and, second, those moving with aerosole cloud. The approach considerably 

reduces the number of grids used in calculations and the calculation diffusion intrinsic in 

Eulerian 

methods as well. 

Implicit difference schemes are used to calculate gas-(hydro-)dynamics and 

difision; concentration and FCT methods are used to calculate convective transfer; 

original algebraic and (k-e) -models are used to account turbulence. Multicomponent 

versions both of carrying and dispersed phases with their unlimited number are assumed. 
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The examples of numerical solution for se\7eral test problems are given: 
- spherical cloud transfer: 

- Prandtl problem: 

- Eckrnarm problem: 

- aerosole propagation with a constant wind. diffusion coefficient and 

sedimentation coef%cient. 
The calculation results of real problems are given: 
- cloud lifting with account of wind and without it; 
- aerosole transfer over the rugged countg’; 

- radiation contamination propagation in the Ural accident. 
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THREE DIMENSIONAL FINITE ELEMENT FORMULATION FOR 
THERIvIOVISCOELASTIC ORTHOTROPIC MEDIA 

M. A. Zocher, 

Los Alarnos National Laborato~ 

Abstract 

This presentation shall be concerned with the development of a numerical 

algorithm for the solution of the uncoupled, quasistatic initiahoundary value problem 

involving orthotropic linear viscoelastic media undergoing thermal and/or mechanical 
deformation. The constitutive equations, expressed in integral form involving the 

relaxation moduli, are transformed into an incremental algebraic form prior to development 

of the finite element formulation. This incrementalization is accomplished in closed form 

and results in a recursive relationship which leads to the need of solving a simple set of 

linear a.lgebmic equations only for the extraction of the finite element solution. Use is 

made of a Dirichlet-Prony series representation of the relaxation moduli in order to derive 

the recursive relationship and thereby eliminate the storage problem that arises when 

dealing with materials possessing memory. Several illustrative example problems will be 

presented for the purpose of demonstrating the ability of the formulation, which has been 
implemented into a three dimensional finite element code, to accurately predict the 

solution to the class of thermoviscoelastic problems addressed. 

65 

—— ———— .. —... —-—___ —— 



66 



Conference 
Papers 

I 

67 

—. -. ..— .— . ________ ——— .—



68 



Analytical and numerical study of accelerated thin layer 
instability 

S.iMBakhrakh, G. P. Simonov 

(R.FNC-VNIXEF, Sarov (Arzamas-16), Russia) 

Using the representation of the governing equations in Lagrangian 
variables new analytical solutions are found for problems of Rayleigh- 
Taylor instability of a thin accelerated layer at the process stage non- 

linear in the observeis space. The analytical solutions are obtained for a 

liquid layer and an elastic layer, given both 2D and 3D perturbations. 

The analytical solutions found have been veri.tied with solving the 

complete system of consemation laws for compressible continuum. 

Through numerical ex~eriments the found mechanisms of thin 

layer perturbation growth are shown to take place for a finite thickness 

layer and compressible continuum half-space. 

The analytical solutions pro~ide a deeper insight into the 

instability nature and mechanisms and constitute good tests for numerical 

techniques of computing continuum flows. 

Studying the Rayleigh-Taylor instability (RTI) is of interest in comection to a 

number of important and urgent problems which include but are not limited to the 

following: high-velocity throwing, inertial thermonuclear fhsion. structure stability, etc. 

For theoretic study of the initial RTI phase representation of the initial equations in 

the Lagrangian variables proved fmitfil. This is related to the fact that in some special 

cases the equations of motion of an accelerated thin layer in the Lagrangian variables 

appear linear at large displacements as well [1]. This allows to analyze them in order to 

describe the perturbation evolution stage non-linear in the obsetver’s space. Thus, refs.[l- 

4] studied evolution of 2D and 3D perturbations of thin liquid layer shape and thickness; 

ref [5] did 2D perturbations of elastic layer thickness. 

This paper uses such an approach to study thin elastic layer surface RTI, given 

both 2D and 3D perturbations. 

Analytical study. The linearized equations of motion of accelerated thin elastic 

layer are 
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Here the median surface of the layer in the unperturbed state is assumed to 

coincide with the surface =0. Next, it is taken that xl-<, yl~-rI, where ~,q are 
Lasymgian coordinates of the layer particles. The acceleration is a=p/pb where p is 
retaining pressure; h, p are initial thickness and density of the layer, respectively. The 

values cob, cd, ~ characterize the elastic properties of the piate material: 

C:d= G/p , C;b =2 G/(p(l- v)=2c~, /(1-v) ,a=c~,h” /12. (2) 

where G - shear modulus, v - Poisson ratio. 

Consider the solution to system(1) of the form 

xl=A1eulcos(k~ )cos(nrl) ; yl=Az e“tsin(k< )sin(nq) ; Z=A: eotsin(k~ )cos(nq). (3) 

It is possible to show that the increment m is determined by the equation (I=c12): 

l+c~~kz +c~~nz 
‘id ‘n 

ak 

‘Ctd ‘n c:bn2 ‘c:, k2 –an =0 (4) 

ak –an l+a(kz+nz)~ 

At sufficiently large accelerations a governing dispersion equation (4) has real 

positive roots L correspondent with exponentially growing solutions. 
In this problem, like in the problem of elastic half-space RTI [6], the notion of 

critical acceleration arises, 
We define the critical value of acceleration a. as acceleration correspondent with 

zero value A=o=O. Assume A=O in characteristic equation (4) to arrive at the relation for 
determination of the critical acceleration a.: 
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(5) 

At n=O we obtain the layer stability criterion given 2D pefiurbations. In this case 
the critical acceleration is determined by relation 

(6) 

At small layer thickness h the critical acceleration determined from (6) is 

noticeably less than the critical acceleration for elastic medium half-space [7] a~=2Gk/p. 

From comparison of (5) and (6) it follows that under certain conditions 

perturbation introduction along the second direction can lead to total perturbation 

stabilization, with the material working for strength more intensively. For example. at n=k 

the ratio q of critical acceleration determined by relation (5) to appropriate value from 

2 – + 2-v)2, that is q> 1, relation (4) g leads to relation q – 1 ( 

The stabilizing effect of perturbation along the second direction is specific for 

media with strength; in the case of a liquid layer the inverse effect of growth increment 

increase takes place [4]. 

Numerical studies. To verify the above-described analytical solutions, numerical 

computations in the continuous compressible elastic medium approximation were 

conducted. The computations were done in the 2D formulation with technique [8] 

designed for computation of elastic-plastic continuum flows and in the 3D formulation 

with the technique extending method [9] to three dimensions. The computations varied the 

principal parameters of the problem. 

It was assumed that k= 1, v=O.28, n=O at setting 2D perturbations and n= 1 for 3D 

perturbations. The equation of state was taken in the Mie-Grueneisen form: p=7.8, c@,6. 

Acceleration, shear modulus G and layer thickness were varied. At the initial time for the 

equithick shape-unperturbed layer velocity perturbations with r2=- 1 were given. At the 

layer boundaries pressure pl=p and pz=O was given at the “lower” and “upper” boundaries, 

respectively. 



At varying thickness h the computations proportionally varied the applied 

boundary pressure. so that acceleration a=piph remain invariable. In the first series of 2D 

computations a= 1, G=5 were assumed. 

in the layers with h=O.O 1; 0.025; 0.1 the perturbations grow. However, the 

perturbation growth is noticeably less than that in the gas-dynamical (strength-bee) 

computation. The computed data for h= 1 and h=2 differ considerably from others. At h=2 

the perturbations appear stable; the case of h=l is at the stability boundmy. 

It is interesting to compare h+ layer perturbation growth rates at various 

accelerations, a=0.33; 1; 2. The critical acceleration for such a layer is a.=1 .028. The 
results of the computations under discussion confirmed the theory conclusions. 

Computations of a thin layer with 3D perturbations in the continuum 

approximation also agree with the above analytical solutions. 
The work was supported by Russian Fundamental Research Foundation Project 

96-01 -OO043a. 
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Architecture of a Multicomputer’s Commutation Network and 

a Difference Grid for Mathematical Physics Problems 

Sofionov I.D. 

Russian Federal Nuclear Center - All-Russian Scientific Research 

Institute of Experimental Physics (VNUEF), Sarov 

Problems you meet in various areas of science and technology require 
computers with very hg~ performance to solve them. To achieve maximum 
performance, computer designers use different techniques. First of all, we can mention 
hid speed elemental base, vector -pipe approach, concurrent execution of several 
different instructions- the so-called “wide instruction” and, finally, multiprocessor 
systems. During the last years the attention to multiprocessor systems greatly 
increased mainly due to gained successes in microelectronics. In present days a great 
number of multiprocessor systems of various architectures is being developed. We are 
interested in two simplest , in some sense, types of multiprocessor systems, namely: 
multiprocessor systems with common internal memory and multicomputers. Tle 
~pical feature of computers with common memory is a relatively small number of 
central processors. To gain maximum performance in this case, very powerful 
processors are used. Multicomputers achieve high performances at the expense of 
using a large number of very compact central processors. Therewith we have to use 
shared memory in Iieu of common internal memory. A multicomputer under 
consideration will be considered to have each central processor equipped with its own 
local internal memory. Suppose further that all processor elements (PEs) are 
connected to each other by some commutation network involving L communication 
lines (CL). Let g be the throughput of each line, i.e. each line is capable of sending g 
till words per a time unit ; f is an arithmetic performance of one processor element. 
Thus, maximum achievable throughput of the whole commutation system equals Lg, 
and maximum arithmetic performance is 

V = M’f, 
where M is a number of PEs which may be intercomected using commutation 
systems of different architecture. 

The most simple is the matrix architecture when processor elements are 
connected to each other in such a manner that a set of them has a matrix structure of 
some dimensionality. 

The problem of computation parallelization to a large number of branches 
becomes more and more actual. Now there are computer systems including thousands 
of processor elements. In spite of the growing arithmetic performance of each 
processor element the problem of their number increase in some computer systems 
doesn’t lose its actuality. For this reason we somehow exaggerate the problem, 
namely: we suppose that we have a computer at our disposal consisting of N processor 
elements , where N may increase with no limit. We also suppose that the problem 
being solved includes N>>M computational points, where N may also increase with 
no limit. Assume that a set ON of all N computational points is divided into M subsets 
with N;’M points in each of them. Let each subset be processed by an appropriate 
processor element. Total multicomputer’s arithmetic performance is proportional to a 
number of processor elements M and increases indefinitely with M + m. However, 
with M + co an amount of data transfers between processor elements may increase 
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indefinitely. Evidently. a question arises: may it be so that the time needed for these 
transfers becomes essentially larger than the time needed for arithmetic work 
cornpieuon? 

Suppose that processor elements under consideration have fixed performance 
and communication lines have fixed throug&put. Further suppose that the difference 
yid G and the hypergrid constructed on it and containing M hypemodes both have 
bounded degrees r < c. 

Statement 1. With above made assumptions for a multicomputer having a 
commutation ne~ork with an architecture of a fill graph of connections the following 
inequalities are valid under any topologv 

Cl <T./T~<CQ (1) 

Here Tn and TA are the times spent by a multicomputer to execute data transfers and 
arithmetic work, Cl and Cz are constants. 

To prove this statement. remember that each hypemode has a finite number of 
-grid nodes, therefore. to calculate the step one needs to transfer a finite amount of data 
from neighboring hypemodes that will implement a finite number of communication 
lines w-ithout any transits because the commutation network has an architecture of a 
full -graph of connections. The above formulated conditions are valid for any M and N, 

i.e. with any M and N the average load of a processor element will be positive. 
Statement 2. Let a multicomputer’s commutation network has matrix 

architecture with a degee R 2 r. Assume that in the original difference grid topology 
re~sglarity violates in isolated points”). 

Under the above assumptions with M + aI we may chose the hypergrid with its 
topolo-g being regular by placing irreealar points into hypemodes. Thus, we obtain 
the task where M hypemodes have reguiar hypergrid’s topology which is to be solved 
using a multicomputer which commutation network has an architecture coinciding 
with the hypergrid topology. Obviously. in the case being considered the time spent 

for transit data transfers will not decrease and inequalities (1) will be valid. 
Statement 3. If a difference grid has an unbounded degree, then an average 

load of processors will approach to zero under the unlimited increase of their number. 
To prove the above statements, it is sufllcient to consider a case when only in 

one point the grid’s degree appears unbounded. Let the degree of the point O increases 
indefinitely. Two cases are possible during the hypergrid construction. 

1. A point with an unbounded degree is an internal point of some hypemode. 
2. A point with an unbounded degree is a boundary point of a hypemode. 
In the first case a situation arises with an increasing N, when a number of 

nearest grid neighbors surpasses a maximum admissible number of points in a 
hypemode. In the last case one will need to remove a part of nearest grid neighbors 
from the considered hypemode and transfer them to another hypemode, i.e. a point 
with unbounded degree becomes a boundary point of a hypemode and we obtain the 
case 2. in this case a part of nearest neighbors of a considered point will be located 
inside and on the boundary of the same hypemode which the point itself belongs to. 
With an unbounded increase of N a number of nearest neighbors of the considered 
point being located in neighboring hypemodes will increase with no limit. Information 
about all these nei-dbors is to be transfered by communication lines to the memory of 
the processor element fotmed this hypemode. A number of communication lines 

“) By an isolated point re-mlarity violation we mean a point which is stmounded by a sufficient number 
of re-g,dar points. 
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com’erging to the considered node may increase with no limit. But all obtained data 
must pass through one or several ports having the finite performance, therefore, data 
transfers may require unlimited time , i.e. 

T.+m 
N+ co (~) 

T,< being a ftite value, inequalities ( 1 ) will not take place in the case under 
consideration and an average load of processors will decrease to zero. 

Let we have a multicomputer with matrix structure of commutation network of 
a degree rl > 0. Assume that in this task the hypergrid topology coincides with the 
commuta~ion network architecture. Under these assumptions it’s not difficult to 
determine bijection behveen the commutation grid nodes and the difference hypergrid 
nodes. Evidently, in this case, if an algorithmic neighborhood coincides with the 
difference grid neighborhood, then the task solution is possible without transit data 
transfers. In other words, we have proved the Statement 4. If the difference grid 
topolo=~ coincides with the commutation network architecture and an algorithmic 
neighborhood follows from grid neiq@borhood, then computation without transits is 
possible. Obviously, we may suggest a more strict statement, namely: if in the above 
described case the commutation network is supplemented by new communication 
lines, then a possibility of transit-free computation remains. In particular, if the matrix 
architecture is supplemented up to the tore architecture or up to the matrix of degree 

r~ 2 r] , then a possibility of transit-free computation remains. 
Statement 5. If the difference grid topology is contained inside the 

commutation network architecture, i.e. if by switching off some communication lines 
it is possible to make the commutation network architecture coinciding with the 
difference grid topology , then the considered task computation without transits is 
possible using such multicomputer, if the algorithmic neighborhood follows from the 
-grid neighborhood. 

Statement 6. If a multicomputer’s commutation network architecture is inside 
the difference grid topology, i.e. by switching off some grid lines it is possible to 
make the difference hypergrid topology coinciding with the commutation network 
architecture for the computer in use, then in this case computation without transit 
transfers is not possible, if algorithmic closeness follows from grid closeness. The 
same fact may be formulated in the following way: if a hypergrid has a degee p] >0, 
it is impossible to solve the task without transit transfers using a multicomputer the 
commutation network architecture of which has a degree p2 >0 less than pl >0 at 
least in few points. 
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THE C/t LCL”L4 TIONS OF R4D1.4.YT E.VERCY TR4NSFER It~ THERhlOA’UCLE4R 14RGETS Iv DIFF[:- 
SION- VA CUUhl APPROXlhlA TION 

Ba.zin A. A., Vatulin V. V., Dementyev Yu. A., Mironova V. F., Skidan G. 1., 
Tikhomirov B. P., Tikhomirova E.N. 

Numerical evaluation of X-radiation symmetry on the surface of capsule containing ther- 
monuclear fuel is one of the key issues in the problem of adequate numerical description of 
physical processes in inertial confinement fusion targets. Solution of the problem in its complete 
statement comprising kinetic equation of radiation transfer and the set of hydrodynamics equa- 
tions meets certain difficulties. 

For this. reason simpler mathematical models are used in practice for preliminary choice 
of initial ICF target design and shape [1]. The paper describes radiant energy transfer in ICF tar- 

gets in diffusion-vacuum approximation. In the flames of this approximation radiation transfer in 
optically thick and close to those regions is described by radiant heat conduction while in opti- 
cally thin and transparent regions by integral equation of radiant heat exchange between radiation 
absorbing surfaces. The regions in which integral equation is solved are called ‘vacuum’, other 
regions are called diffusive. Radiation transfer between diffision regions through transparent en- 
vironment is described by integral equation, with account of photon time-delay [2]. For numerical 
solution integral equation is substituted by a set of algebraic equations which is solved by relaxa- 
tion method [3]. View factors and average photon time-delay are calculated using the technique 
presented in [4]. 

It should be noted that there are two approaches to developing numerical techniques for 
radiant transfer simulation. Both of them are based on the concept of separate calculation of dif- 
fusion and vacuum regions. The initial problem is represented as two simple problems, soluble 
consistently. The first approach - iterative. The decision is built by a method consecutive ap- 
proximations. The boundary conditions on a surface non transparency are corrected on each itera- 
tive cycle. The method is simple in realization, but requires appreciable expenses of processor 
time of the computer. The second approach is based, that the exchange of boundary conditions 
between diffusions and vacuums by areas occurs automatically on each temporary layer. Thus ab- 
sence necessity of iterative process, that results in economy of processor time. However there is 
the danger of occurrence of computing instability, as the stability of algorithm as a whole much 
depends on a way of the task of exchange boundary conditions. 

The technique considered stipulates several types of exchange boundary conditions which 
provide the calculation process stability. Particularly, one-way fluxes might be transferred or self- 
similar flux and temperature obtained from the solution of the equation of transfer in vacuum re- 
gion and the equations of radiant heat conduction in diffusion regions are jointly calculated. 

For the problems considered the process of reradiation from the cavity wall is described 
either in black body approximation (modei 1) or by boundary conditions of diffusion type (model 
2). In the latter case the flux from diffusion region can exceed the value of radiation flux into 
vacuum. To remove this error an easy method of limiting the diffhsion flux is proposed. The flux 
is determined by the formula: 

w =oTa -$ J-+u T’ _+ J-Y 

where cr is Stephen-Boltzmann constant, T is temperature, 
The material motion in diffision regions is described by gas dynamics equations which 

are solved by finite-difference method in 1-D sector” approximation [5]. 
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To exemplifi application of the given approximation method for radiant energy transfer 
problems we consider the problems of X-radiation propagation in laser and heavy-ion targets. 

1. Laser targets. 

The calculations have been done for the laser targets of small diameter with laser energy 
radiation of 8 U. Such targets were tested at VNI.IEF on “ISKRA-5” facility [6]. The geometry of 
two targets being studied is presented in Fig. 1. 

Targets 1,2. 

Qb Qb 

ACif-6P, AW+6JWI, ACu+J mm, AS0.ti5pt, A@n-A5~ 

Fig.1, 
A spherical capsule of 0.095 mm radius is located in the center of a hollow cylinder with 

inner diameter 0.9 mm and length 3.2 mm. The capsule has a glass casing 5 pm thick. The casing 

is filled with gas with the density 0.004 G/cm 3 . The cylinder casing has two layers. The outer 

layer 6 pm thick is made of polyethylene; the inner layer is sprayed gold 0.6 pm thick. The 
cylinder is sealed by round plates at the ends. The outer plate is copper. It is 0.3 mm thick. The 
inner plate is made of gold (0.2 mm thick). X-radiation flux as a fimction of time was set on Q 
surfaces as a source, the dependence corresponded to the experimental parameters of “Iskra-5” fa- 
cility laser pulse. The source energy made 2 kJ in all calculations. The condition of energy outlet 
into vacuum on the Qb surfaces (-1.2--1.1, 1.1-1 .2) was set. Exchange boundary condi- 
tions were set on Q 1, Q2, QI, QII surfaces . The second target differs from the fust one by the 

presence of polyethylene film 3.5 pm thick placed at a distance of 7 mm from the target center 
(see Fig. 1) to shieId the capsule born laser radiation. 

The calculations were mainly aimed at assessing the radiation field symmetry on the 
spherical capsule surface. The targets were calculated in two versions: with and without account 
of gas dynamics processes. It was demonstrated that in static case the value of temperature field 

mew at the moment when the tempm~e on the eq~tor reached its maximum made 
10.5% and 10.6% for the fit and for the second targets respectively. In dynamic case these val- 
ues appeared to be equal to 20% and 16,3% correspondingly. 

2. Heavy-ion target. 

A cylindrical target of 1.3 cm diameter and about 1.6 cm height is considered (see Fig.2). 
The target is radiated by 10 ion beams with total energy of 10 mJ. 

The given target was optimized by means of two-dimensional calculations. In two- 
dirnensional calculations (five cases) the converter width was varied and its position on the side 
surface along with the cylinder height. The curves are given from these calculations to charac- 
terize temperature on the capsule surfhee as a function of angle 0. 
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Cylindrical target geometry. 
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Fig.2. 
. 

To evaluate temperature field asymmetry over the rotation angle v 3-D calculations were 
made. In three-dimensional problem the converters in the leil and right halves of the target were 
turned relative to each other by the angle of Aq = 36°. 

The analysis of results of three-dimensional calculations demonstrated that the tempera- 
ture field asymmetry on the capsule surface over angle e lies in the range of 1 % and over angle q 
it does not exceed O. 15°/0. 

The numerical method based on diffusion-vacuum approach to energy transfer description 
is applicable to other problems of radiation heat exchange found in engineering. 
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C031PUTATION OF IWDIATIOX TRANSPORT AT BOUXD.AR}’ SUR.FACE 
ANISOTROPIC LIGHT ENIISSIOX 

S. KBa:heno\*, P.I.Pewlaya 

The technique is designed for solving the equation of 
radiation transport in a radiation-transparent region for the 
case where the distribution of radiation intensi~ from the 
bounda~ surface is of quite an arbitrary form. The problem 
solution uses a method based on employment of angular 
factors. 

The equation of radiation exchange among botmd~ surfaces cart be found 
from the expression for one-way radiation flUY J- leaving the region through its unit 
boundary surface 

(I) 
R p ~dS 

J-( A, f)= ~I(x4,ti,t)pAdQ= f~(ll,ti,~-+p,,= 
k BES c ..@ 

\vhere 1 is radiation intensi~ in direction Q , 
p - cosine of the angle behveen the direction in \vhich the intensi~ is taken and the 
normal to the surface. 

Assuming that the bound~ surfaces emit by the Larnben Ia\v. i.e. in all 
directions w-ith identical intensity, the equation transfers to 

p) .r(A.r)= J.m+) ~“’;ys 
BeS .46 

The system is closed with setting at the boundary of flow 

and balance relation J- - J“ = q. 

To sohe the problem. splitting S, ( i=],.., J] ) is introduced on the surface and 
the transition is made from integral equation (2) to equation system 

{/ 
S, J,-(f) =x[/l,j J;]/- LJ(/) 

(4) ,=] 

i= 1,..., M 
where matrices A,j and L,, are geometrical integrals 

When deriving the computational scheme \~e \vill base on the assumption that 
in equations ( 1 ) and (2) integration can be done over the surface S(t). 

In most cases this assumption secures a high accuracy as the boundq surface 
motion velocity is much higher than light \’elocit! C. 

Let the solution is sought for at time t“+l . 
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The left-hand side of equation (3). given multiplied b} the timestep ~. provides 
the radiation energ: flux flo~ving out of the region through the surface S, per 
computational timestep 

,,. , 
● 

“ 

According to’ the assumption of integration over the surface S(t) at time t’+ I at 

the surface $ the radiation arrives which left the surface Sj at time r‘-’ – <,”’ and at 

time t“ at the surface $ the radiation arrives which left the surface Sj at time [“– ~.. 

Hence. during the time interval (tn,tn+l ) at the surface $ the radiation arrives 

which left the surface Sj within the time intetwal ( I“ – ~,,/””’ - ~,”). 

And the narural formula for each addend in the right-hand side if system (4) is 
of the form 

If at computing the integral in (6) one accurately uses the principle like in 
formula (5). i.e. if one assumes the integrand constant and equal to its value at time 
t~+l at each timestep (t~, t~+l ). then fkom equation system (-l) strict consenativism of 

the scheme 

-~~+qn+l~ = ~.l _~n 

41 

1=1 

follows, where En+l ,En is radiation energy in the region at times t’+], t“ . 

E(f”+’) = + J J( “L(A,Qf)dl) ~#KMs= ff ‘“f41J,~t 
AES2X p-q-l ‘=’ ‘=’ 1“-’-4-’ 

Many computations used the Lambert distribution tvhen solvirw the kinetic 
equation of radiation transport on the region boundq. 

The basis for this is the fact that heat flow-s to the region \valls composed. as a 
rule. of lo~v-transparency materials are noticeably less than emission of the absolutely 
black body. i.e. 

q << ++. 

At the same time. in many problems there \vere bound~ surface areas where 
the radiation passage to the region considerably differed from the Lambert 
distribution. 

Indeed. in the computations the vacuum regions can border lo~~-density and 
fairly radiation-transparent regions energy release from \vhich is computed in the 
diffusion approximation. 

using the Lambert distribution at the interface bet~veen the yacuum and such 
fairly transparent regions inevitably leads to loss of local approximation in the 
computation on separate boundary surface areas. and the question of necessity to 
estimate the region of effect of the errors made inevitably arises. 

In practice this \vas expressed in the fact that. instead of the Lambert 

distribution. 1(~.fi.[) = A J+ (A, t) , relationships of the form 
n 
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or l(A, p,l)=+Fo J( u,). 

are admissible on the boundary surface. f(p) is an arbitr~ given function p 
satisfying the 
normalization condition 

; kWdn=l 

To close setting up the prob;;m, functions Fk me assumed kno~~m functions of 

~ and heat part of flow q,: 
FL =AFkl Y- AFk2 q, + AFkj 

where A Fkj are known fictions of coordinates. time. 

The so-called “heat” flow q is assumed composed of nvo components: actually heat 
part of flow q, and other losses of energy qy e.g., kinetic energy, etc. 

q= 4’1+ !7: 
The relation between one-way radiation flues takes the form 

J-= J’+qi+q> 
Division of the energy flow q through the bound~ region into two 

components seems justified for the reason that the principal formula for Y which is 
always used in the computations is obtained under the assumption that the folloving 
expansion takes place for the region wall temperature: 

Estimation of emission of the material behind the \vall into the region. i.e. of 

flux ~, reduces to integration of the function T’(.Y) over the \vall material. 

The integral of the first addend yields ~ T’ and that of the second addend 

does l12q. 
From the form of the expansion for 7“ (.Y) it is clear that the second addend is 

only related to presence of the temperature gradient in the ~~all material. i.e. only to 
the thermal flow part. 

In particular, note that using the expansion for ~(.~-) leads not 

1 ;7+’, P). to the Lambert distribution. but to the formula J( .4, p, 1 ) =; ( 
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In our opinion. the need of the quadratic addend in the intensity formula is due 
to the fact that. as the computations showed. the emission intensity dependence of the 
\vall material on ,U at the initial phase of its heating is not described \vith a linear 
function and is of the form 

I(p) 

+ 

1 CJc .— T 
X4 

0 1 P 

tangent to s normal to S 

Using the intensity formulas leads to the equation system 

S,(J: +9,, +9,,)= hj4ijL./] (-~ 
J L=O ,) 

\vhere AKij , LKiJ are geometrical integrals. In the integrand numerator additional 
muhip]iers pBk or f( pB) appear. depending on the formula used for the emission 
intensity. 

The above-discussed approach for provision of scheme consemativism and 
accounting boundary surface radiation anisotropy is implemented in the R4DIBS 
code. 
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DIFFERENCE SCHEME CONSTRUCTION FOR COMPUTING 
2D TIME-DEPENDENT ELASTIC-PLASTIC FLOWS BASING ON THE 
LAW OF KINETIC AND INTERNAL ENERGY INTERCONVERSION 

VNIIEF, Arzarnas-16 

Delov V.I., Senilova O.V., Sofionov I.D. 

suMMARY 

The Wilkins scheme /1/ is widely used presently for computations of 2D 
and 3D continuum gas-dynamical flows in Lagmngian variables. This scheme 

possesses a number of positive features, however, also has its disadvantages. A 

number of papers are devoted to its development, as well as description of its 
application results. The proposed technique for difference scheme 
construction can be used to eliminate one of the principal drawbacks of the 

Wilkins scheme in the case of axial symmetry relating to its non-conservation 
of total energy. 

In the presentation the difference schemes for comput~g 2D time. 

dependent elastic-plastic flows are constructed in two stages: 
At the first stage the conservative differential-difference representations 

of the equations of motion are derived which describe isotropic axisyrnmetric 
time-dependent elastic-plastic flows in Lagrangian variables. The technique 
under discussion is an extention of the 2D technique for construction of spatial 

approximations of gas dynamics equations of motion /2/, /3/ for elastic-plastic 

media. Its distinctive feature is simplicity and fast derivation of the 
differential-difference equations of motion which are close in their structure 

and quality to the equations derived using variational approaches. 
At the second stage the time discretization of obtained differential- 

difference equations at the second approximation order is made. 

DERIVATION OF DIFFERENTL4L-DIFFERENCE 

EQUATIONS OF MOTION 

To obtain the differential-difference equations of motion primarily in the 

region of variation of variables (xjy) at the initial time it is necessary to choose 
the approximating grid. Here we restrict our consideration to regular grids. 

The volume of an elementary tetrahedral grid cell whose sides are straight 
line segments is evaluated as volume of a body produced by revolution about the 
axis Ox. 

87 

—— — —.. -—_ 



The grid space 

technique “D” /4/: 

distribution of the values is taken as it is a practice in the 

the velocity and coordinate values are related to the grid 

nodes and all remaining values to the computational cell centers. 

Then the kinetic energy matrix and difference representations of the 

deformation rate tensor components are determined. 

In the presented work the kinetic energy matrix determining the pressure 
gradient approximation technique is taken in the canonical form 

com’entionally used in gas-dynamical techniques. Then the kinetic 

elementag cell i is of the following form: 

which is 

energy of 

~i = 0.125 ”M, ~(u; +V; ), , 
j=l 

where j - the number of the cell vertex, lvfl=~lvi - mass of the i-th cell, 

p, - material density in the elementary volume, Vi - the cell volume, 
U,V - velocity vector projections on the coordinate axes Ox, Oy, respectively. 

The next step is recording the law of conservation of total energy for the 
whole computational cell set. Then, taking into account the law of internal 

energ>r \rariation, the law of variation in kinetic energy of the whole 

elementagr volume system under consideration is traced out. Upon transition in 
the obtained “relation to summation over the grid nodes, the differential- 

difference equations of motion are determined. 

TIME DISCRETIZATION 

At construction of the proposed difference scheme the grid time distribution 

of the \ralues is taken as it is a practice in the technique “D”: the velocity 
\’alues are related to half-integer points in time tn+*n and all remaining values 

to integer points in time tn, i.e. the time derivatives are approximated within the 

second order of accuracy. 
The increments of the components of the strain tensor per timestep, 

stress tensor deviator at time tn+l and the shear strain ener=~ increment are 

determined according to the Wilkins scheme. 

TEST COMPUTATIONS 

The results of two test computations are reported. The problem of planar 

stress wave in 2D axisyrnmetric formulation is taken for the first problem. 
The second problem of elastic membrane vibrations is used as a basis to show 
the unquestionalbe advantage of the obtained difference scheme over the classic 
Wilkins scheme. The figure below illustrates the time history of the plate 
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total energ which should remain constant in the computation b} the Jvilkins 

scheme (computation 1 ) and by the proposed difference scheme (computation 2) 

Total ener~ vs time 
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EFFICIEATT SINGLE SCATTER ELECTRON- MOINTTE CARLO 

}l. hl. Svatos and J..A. Rathkopf 

Lawrence Livermore N-ational Laboratory 
Livermore. CA 94550 

ABSTRACT 

.A single scatter electron Monte Carlo code (SSMC), CREEP. has been written which bridges the gap 
between existing transport methods and modeling real physical processes. CREEP simulates ionization. 
elastic and bremsstrahlung events individually. Excitation events are usually treated with an excitation- 
only stopping power. although simulation of individual excitation events is possible. .Agreement of these 
quantities with experimental values is generally quite good. 

One application of this code is the generation of probability distribution functions (PDFs) to describe 
the phase space of a single electron emerging from a sphere of a given material and radius. A library of 
data sets for such spheres (or “kugels” ) is being computed for a variety of incident energies. material types. 
and sizes. The final goal of this work is to achieve extremely accurate transport results with an efficiency 
that is similar to that of condensed history methods. 

1 Introduction 

Single scatter Monte Carlo (SShlC) physics is gaining attention for electron transport, despite the fact that 

it is inherently very time consuming. One reason is that since single scatter calculations conform more 
closely to the physical processes the electron undergoes, they can serve as a means to explore the validity 

of assumptions used in other transport techniques. The results of SSMC can also be tallied and fed into a 
more efficient code. 

SSMC allows large angle scatter and backscatter measurements to be calculated with greater accuracy 
in a reliable manner. Large angle scatter and backscatter. being relatively rare. result in much of the 
seemingly eccentric energy deposition behavior of electron beams (and photon beams for that matter. since 
photons deposit their energy to the medium through secondary electrons), including lateral blooming with 

distance and nonuniformities (“hot” or “-cold” spots) found near changes in the medium type or density. 

CREEP relies on sampling the Lawrence Livermore Evaluated Electron Data Library (EEDL). which 
was established at LLN-L by 1990 to complement the ENDL (Evaluated Nuclear Data Library) and EPDL 

(Evaluated Photon Data Library). Complete documents detailing its contents, with derivations. are avail- 
able [1–3]. Cross sections for ionization (by subshell). elastic scatter. bremsstrahlung, and excitation are 

tabulated on an energy grid with a variable placement of points between 10 el” and 100 GeV, for atomic 

numbers 1 to 100. Compounds and mixtures may also be used by combining the appropriate element data 
via Bragg additivity. 

One important application of SSMC is to use it as a foundation for other more efficient methods. This 
has been called a Local-t&Global approach. It works by breaking the calculation into two stages: a local 
calculation (SSMC) done over small geometries having the size and shape of the “’steps” to be taken through 
the mesh: and a global calculation which relies on a stepping code that samples the stored results of the 

local calculation. An example of an SSMC-based Local-to-Global code will be introduced in Section 4. 

2 Single Scatter Monte Carlo Code 

The CREEP code is written in FORTRAN and C. in a very simple style with the intent of being extremely 

portable. Since this code is intended primarily as a means to explore basic physical properties of the 
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Figure 1: LEFT: The geometry of the local calculation. RIGHT: An example global calculation. 

medium. only simple geometries are assumed: either spherical or slab or a slab layered with different 
materials. 

The overall algorithm for a truly single scatter charged particle code is a direct analog of the algorithm 
that has historically been used in photon and neutron Monte Carlo codes. Briefly. one finds the distance 

to interaction by finding the total cross section at the present energy and uses the relation s = –J in(q) , 
where q is a random number on the interval (O. 1]. One then determines which interaction took place. by 

forming and sampling from a cumulative probability based on the cross sections for each of the four possible 
interactions (ionization, excitation, elastic scatter, bremsstrahlung). The energy. position and trajectory of 
the particle are updated to reflect the chosen interaction. Then the same process is begun again. provided 
the electron has not escaped the medium or fallen below the energy cutoff. 

3 Results from Single Scatter Monte Carlo 

Benchmarking this code with experiment for a variety of elements and select compounds and mixtures. 
over the energy range of the EEDL database. is a large effort that is still in its infancy. 

Historically, backscatter has been difficult for condensed history codes to simulate correctly. Figure 2 

shows two examples of backscatter information generated by CREEP compared to experimental values. 
The agreement is generally quite good. 

Comparisons of the CREEP single scatter Monte Carlo (SSMC) code with energy deposition measure- 
ments are shown in figure 2. Agreement to experiment is generally quite good for a variety of materials, 
incident energies. and incident angles. The curves did not require normalization. 

In addition to the preceding quantities, CREEP also calculates analog stopping powers (the amount 
of energy lost per unit distance for both radiative and collisional events). energy deposits due to individ- 
ual interaction types, and “real” pathlength (cumulative distance between events) which can be used to 

calculate detour factors (the ratio to the real range compared to the CSDA range). 
Obtaining these results is time consuming. Some timings are shown in Table 1. In general, the simula- 

tion time increases with the number of histories, the geometry size. and as the energy threshold is lowered. 
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Table 1: Timings for several CREEP runs on a SunSparc 20 running Solaris OS 2.51. Each medium ~va> 
a slab of 1 mm thick. Results for the number of interactions. the number of calls to the random number 

generator (R.YG). and the user time are normalized per incident history. 

lIedium I Density (g/cc) Interactions I RNG calls User Time (s) Ratio 

H 1 x 10-4 0.66’7 8 2.52 ~ 10-~ 1 

0 1.4 x 10-3 5.098 39 1.7’7 x 1O–J ~.o~ 

Na 1.0 6714 48001 1.35 5357 

H2 O 1.0 8057 717’14 3.30 13095 

.Au 19.3 19810 145541 6.98 27698 

All of these require more interactions to be simulated. The version of the code which includes compounds 

and mixtures is also notably slower than the single-element versions. Table 1 gives some feel for how the 
run time scales with different media. 

Clearly if this method is to become practical, there must be a means for a radical speed-up in the 
execution time. Such a means has been suggested in the Local-t~Global algorithm. [7] 

4 Using Single Scatter Results in Local-to-Global Transport 

In this application. the local calculation is an SSMC (CREEP) run performed in small spheres of various 
materials. The electron is started in the center and tracked until it crosses the surface of the sphere, at 
which time the following state variables are tallied: exit energy, exit ‘-position cosine” (z/R). elevation 

angle (6) and swing angle (a) of the trajectory in the exit plane. and the number of secondary particles it 
set in motion that also escaped the sphere. The sphere. or lmgel, is also divided into four surface bands: 

each band has its tallies kept separately. This geometry is illustrated in figure 1. .After many histories, 
these tallies result in probability distribution functions (PDFs). each having 100 equally-spaced bins. that 
may be sampled by the global calculation. Knock-on electrons that escape, as well as all photons. are kept 

in separate distributions. 
The global geometry for cases of interest is divided into voxels of varying density and material type. 

.An example is shown in figure 1. For each history, a kugel of appropriate size and incident energy is chosen 

from the library and centered on the electron’s location. The exit conditions are then sampled from that 
kugel”s PDFs. starting with the exit band b. on which the other variables depend. The exit energy is then 
sampled. which sets the (target ) energy loss, EIOSS = Ein – Eout. The exit trajectory is determined by 
sampling two correlated angles, o and 8, from which three correlated direction cosines can be obtained. 
The target exit position on the sphere is found by sampling the z coordinate, and then randomizing x and 

y on the z-ring. This exit point is used to define the endpoint of a vector which starts at the center of the 

kugel. It is along this projected pathlength vector that E105, is deposited. Since a kugel can be larger than 
a transport zone, the energy deposited in each zone is scaled by two factors: the fraction of the projected 
pathlegth vector through the zone, and the density of the zone. If the density of a zone is greater than the 
nominal density that was used in the global calculation. the energy will be deposited before the edge of the 
kugel was reached; thus a new exit position is found along the same trajectory, but closer to the center (or 
vice versa for a less dense region). If a new material is encountered during the energy deposition scheme, 
the step is stopped at the boundary. and only the energy deposited up to that point is subtracted from 

E2n. The next step is taken in the new material. 
After each kugel step, the average number of secondary electrons escaping from (anywhere on) the kugel 

is sampled. n,, given that the primary escaped from band b with exit energy EOut. The state varibles for n, 
secondary electrons are then sampled in a manner exactly like that above, but the results are taken from 
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the secondary electron distributions. The same is done for photons. which are not tracked. but passed off 

to another code for transport. 

5 Summary 

Single scatter Monte Carlo provides the most accurate way to simulate electrons. howe~er it is too slow 
to be practical for general use. It is possible to have a code with both speed and accuracy by using the 
Local-to-Global method of precalculating distributions. A current implementation of this algorithm uses 
approximately 5 x 10A bytes per kugel PDF set. If the application can be defined by a limited number of 
materials and step sizes. the total amount of storage is quite feasible. 

The speed-up in the global calculation comes from needing a fewer number of steps per history and 

also a fewer number of operations per step. The accuracy converges to that of the local SSMC calculation 

as many histories are run. provided the PDF sampling routine is faithful. Further investigation as to the 
degrees of speed-up and accuracy in various geometries is an ongoing effort. 

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence 
Livermore Xational Laboratory under contract number fV-7405-ENG-48. 

References 

[1] D.E. Cullen and S.T. Perkins. The Livermore Bremsstrahhmg Database. UCID-21627, 1989. Lawrence 
Li\rermore National Laboratory. 

[2] S.T. Perk” w-is and D.E. Cullen. The Livermore Electron Impact Ionization Database. UCID-21628. 1989. 

Lawrence Livermore h-ational Laboratory. 

[3] S.T. Perkins and D.E. Cullen. The Livermore Electron Elastic Scattering Database. UCRL-ID-10317O. 
1990. Lawrence Livermore A;ational Laboratory. 

[4] G.J. Lockwood. L.E. Ruggles. G.H. Xliller. and J.-l. Halbleib. Calorimetric .Ilea.surement of Electron 
Energ~” Deposition in Extended Media - Theory vs Experiment. Sandia Report SAND’79-0414. 1980. 

[5] E.H. Darlington. Backscattering of 10-100 kel” electrons from thick targets. J. Phys. D Appl. Phys, 
8:85–93. 1975. 

[6] G. Neubert and S. Rogaschewski. Backscattering Coefficient Measurement. of 15 to 60 kel- electrons 
for Solids at various angles of incidence. Phys. Stat. Sol.. 59:35-41.1980. 

[7] hl.hf. Svatos. C.T. Ballinger. H. Neuenschwander. T.R. Llackie. JY.P. Chandler. C.L. Hartmann Siantar. 
J..4. Rathkopf, and P.J. Reckwerdt. Electron Transport in Radiotherap~. using LocaJ-to-Global Monte 
Carlo. In Proceedings of the International Conference on Mathernatws and Computations. Reactor 

Physics, and Environmental Analyses. pages 866–87.5. La Grange Park. IL. 1995. .4merican h-uclear 

Society. Inc. 

94 



Energy vs Depth in Terrtslum 

300 bv hti, .1 w 460 dw”. 

Comparison of Beckscstter Percentages in Thick Al 

r&nn.1 hMalc9 
,9 

,3 J 

72 ~ 
50 ,Ca ,54 Xlo 

blew, ianl~ ,,.V) 

Energy Deposition vs Dspth In Beryllium 

r&rFn91 — rnl V.lybq ElluqNO 

10 keV e- Normslly Incident on Thick Al 

SmtilmIUI E.ruv -. 

Omn 

0.0.?0 - 

~ 

A 

00,0 

& 
& * 

*4 
*-U ~ 

Figure 2: TOP and MIDDLE: Energy deposition is shown as a function of depth into the medium, where 
the depth has been normalized to the CSDA range of the electron in each case. The points attributed 

to Lockwood et al are from calorimetric measurements [4]: the comparisons are absolute. BOTTONI 
LEFT: CREEP backscatter percentage (including backscattered secondary electrons) compared to the 

experiments of Darlington et al [5] and I$eubert et al [6]. 
spectrum result ing from a 10 kel- electron impinging on 
compared to the mean free path of the incident electron. 

BOTTOM RIGHT: The backscattered energy 
an aluminum slab that is large in x, y. and z 
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THE ENERGETIC ALPHA PARTICLE TRANSPORT METHOD EATM 

Ronald C. Kirkpatrick 

LOS Alamos National Laboratory 

Absrtract: The EATM method is an evolving attempt to find an efficient method of 
treating the transport of energetic charged particles in a dynamic magnetized (MI-ID) plasma 
for which the mean free path of the particles and the Larrnor radius may be long compared to 
the gradient lengths in the plasma. The intent is to span the range of parameter space with 
the efficiency and accuracy thought necessary for experimental analysis and design of 
magnetized fusion targets. 

Introduction 

There have been several methods applied to the problem of energetic charged particles (e.g., 3.5 
MeV DT alpha particle) transpon in unmagnetized fusion plasmas [ 1 -4] as well as heavy ion 
transport in high-Z radiation converters for ion beam fusion targets [5]. In addition, the magnetic 
confinement fusion community has treated the problem of transport through very tenuous plasmas 
in the presence of magnetic fields [6-8]. However, the problem of energetic charged particle 
transport in a relatively dense, dynamic magnetized plasma has not been adequately explored. The 
research code EATM is an evolving attempt to find an efficient method of treating the transport of 
energetic charged particles in a dynamic magnetized (MI-ID) plasma for which the mean free path of 
the particles and the Larrnor radius are initially long compared to the gradient lengths in the plasma. 

The intent of this work is to span the range of parameter space with the efficiency and accuracy 
thought necessary for experimental analysis and design of magnetized fusion targets. Magnetized 
target fusion (MTF) [9] attempts to take advantage two benefits of the magnetic field in order to 
lower the driver requirements for fusion ignition: reduction of thermal conduction across the field 
and turning of the charged fusion reaction products. It is the second of these benefits that the 
EATM transport method is intended to illucidate. 

One of the earliest examples of MTF targets is the Sandia National Lab Phi-target, devised in 1977 
[10- 11]. About the same time Los Alamos National Laboratory (LANL) was exploring the Fast 
Liner concept [12], a larger cylindrical embodiment of MTF, and more recently Los Alamos and 
the All-Russia Scientific Institute for Experimental Physics (VNIIEF) have collaborated on the 
MAGO experiments that are intended to study target plasma formation for MTF [ 13]. 

The EATM approach is as follows: Use piecewise analytic solutions and transformations to build 
transport matrices for a range of single computational cell parameters. Then use these matrices to 
effect the transport throughout the computational mesh. This approach should be most applicable 
to codes with fixed orthogonal meshes such as Eulerian algorithms or AMR codes. An important 
property is correct asymptotic behavior for two extreme cases: a) no field and b) zero density. 
Between these extremes it is necessary to obtain some benchmark for the method, One benchmark 
is the results of a particle tracking code that has been we have been using to acquire some 
preliminary results for various static magnetized plasma configurations. The particle tracking code 
could be extended to dynamic plasmas, but it becomes expensive for complicated configurations. 

Uniform Zone Results 

For the case of slowing due to both electrons and ions 

dE/ds = - b, E-l -b, E“’ G(x) , 
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where E is the particle energy. s is the distance traversed, bc and b, are coefficients that depend orl 
the plasma temperature and density, Xz = m, E / (m kT,), 

G(x) = 2n-”z erf(x) - ( 1 + m)m) x exp(-x~) 

= F3/( F2 + a3) , 

Here we define F = E“ and a’= m kT, / m,. A factor similar to G(x) also occurs for the ions, 
but only near background ion thermal energies does it differ from unity. 

By resorting to the above simple approximation for G(x), it is possible to get an analytic result for 
the energy of the particle as a function of time: 

where @=( F3+H3)/(a–l)H3, H3=a3bi/(bi+ be), a= b,/(bL+ b,). and 

~ =2(m/2)’nasb, /3( b,+ bC)~. In the fast electron limit G(x) = F3 / a? , so that the above resul[ 
reduces to the form 

However, for plasma electron temperatures near 1 KeV and below, the fast electron approximation 
can lead to very large errors, so it is important to avoid this approximation if results that are valid 
over a wide range of plasma temperatures are desired. 

The time interval for slowing from FO to F is 

t =~{ln[(FO~ +H3)/(F3+H3)] +(F03-F3)/(a–l)H3 } . 

The above analytic results apply to the slowing of the DT alpha in a homogeneous medium for ;II) \ 
constant value of magnetic field B. There is an energy dependence in the coulomb logarithm fot- 
the ions which was not included in derivation of the analytic results above, so for evaluation 01 i I ~. 

constant b, some mean energy such as FFO must be used. 

These analytic results connecting t, and E (hence s and v) are very useful for facilitating 
numerical integration and for characterizing the DT alpha trajectory in a uniform computational 
zone. A table of t(F) is easily calculated to provide F(t). It should be noted that direct numerl c,1; 
integration of dE/dt = vdE/ds can both avoid use of the G(x) approx-imation as well as include [~,. 

dependence of the ion Coulomb logarithm on the energy E. 

In an (x,y) plane with B = B, and VZ = v cos $, where tan@= vXy/ v, , 

J x = Vxy sin @t dt, y=~vXYcoscotdt, andz=~vZdt, 

where v,= (2/m)l~ F cos $ and VXY = (2/m)”z F sin @ , 

For slowing by electrons only (b, = O), these integrals have analytic forms, but for b, >0 we hi.. 
not found an analytic. However, the problem reduces to numerically integrating two function>: 
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sinf(9) = ~ f((3) sin 0 df3 and cosf(e~ = j f(e) COS e de. 

where 0 = cot and f(0) is the inversion of 

e(~ = in [(fO’ + h3) / ( f(0)3 + h3 )] + (fO’ - f(0)3 ) / [a –l)h’ 

Using a piece-wise linear fit to f(e) allows a piece-wise analytic integration to be carried our to m 

accuracy that depends only on the step size A6 used: 

. 
J(c+bfI)sinede =ZL{-ccOs e+ bsin(l-becOse} 

and hc+be)cosede =ZA{ csine+b cose+besine) . 

Only two numerical calculations are needed for a given homogeneous zone, because the 

transformation properties for the functions sinf(e) and cosf(e) allow the results of the two 
numerical integrations to be reused over and over for many trajectories through that zone. 

Transformation 

The integrals sinf(e) and cosf(0) to get sinf’((3) and cosf’((3) for which the starting value fO’ 
differs from fO can be transformed thus (see Figure 1): 

sinf ’ = (cosf - cosf,) cos e, + (sinf - sinfi) sin e, and 

Cosf ‘ = (sinf - sinfi) cos e, - (cosf - cosfi) sin e, , 

where 

x 

Figure 1. The trajectory in the primed coordinate system is obtained by transforming the 
trajectory calculated for the original coordinate system. 

sinf = sinf(fO,h,a,e), Cosf = cosd(fo,h,a,El), 

sinf, = sind(fO,h,a,e ,), Cosfi = cosd(fO,h,a,(l ,), 

sinf’ = sind(fO’,h,a,(3), Cosf’ = cosd(fO’,h,a.(3), 
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Crossing Time 

It is possible to calculate the time when the DT alpha particle crosses a specified plane. For 
simplicity the case of slowing by electrons only (b, = 0) is uesd to illustrate the procedure. For the 
magnetic field in the z direction and the x direction in the direction of v X B, the path of a DT aiph~ 
parucle entering a homogeneous region at the origin will be: 

y(t) = VYOT ( 1- e-u’ (COS @t - m sin W )) / (1+(0%1) 

z(t) = vZO~ ( 1 - e-v’) 

The equation for a plane in that coordinate system is A x + B y + C z = D, where A = d,/d. B = 
d,/d. C = dZ/d, and D = d. Here, d is the distance between the point of entry into a computational 
cell at (0.0,0) and the plane defining one side of the cell. 

Defining the coefficients: C, = ( VYOT (AOM + B) + C VZO? - D ), C, = VyO~ A / C, (l+@’&). C, = 

vvO~ B / C, (l+wz&), Cd = C vZO’r / Cl , solving 

e-”’ [ (C2 - C~ m) sin cot + (C, + C~ w) cos @t + C,] = 1 

for the minimum crossing time t (there are potentially several crossings), and substituting t into 
the above equations provides the exit point (x,y,z). Since there are more than one plane that 
define the cell, the minimum time among all of them must be found. 

Tables can be made for the solutions to ewm = a sin @t + b cos (ot + c, and an interpolation 
used to efficiently find solutions. The most convenient approach is to write the equation as 

eqe =asin(3+bcosfl+c = Rsin(e+y)+c, 

and then solve for q(e) = I/cm, interpolating to get the x that satisfies the equation for a given q. It 
should be noted that since m >0, q >0 for physically meaningful solutions. For a given value of 
q there are multiple values of (3 = ox. Since we want the first crossing time, we choose the 
smallest value. For a zone defined by multiple planes ( A~x + BRy + Cn z = Dn ), the smallest from 
among all @tn is selected. 

This procedure can be extended to the case of slowing by ions and electrons, but becomes more 
complicated simply because the path for a DT alpha can’t be expressed analytically for that case: 

(2/m) ’n[sin@ {A~Fsin utdt+BJ Fcosmtdt }+ Ccos Q~Fdt] =D . 

which reduces to solution for 0 in an analogous equation: 

a sinf((3) + b cosf((3) + c j f(e) de = 1. 

For a given zone f(e) is calculated first and J f(e) de is easily evaluated, so the functions sinf(el 

and cosf(e) can be calculated. The transformation procedure can then be used to provide 
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intermediate values for these functions. Then the crossing time is obtained by solving for the 

smallest value of (1 that satisfies an equation anaiogous to the one for crossing time with slowlng 
due to electrons only. 

Applications of the Analytic Results 

The above results have two potential applications. One is in the implementation of a Monte Carlo 
approach to Charged particle transport. For the case of high plasma temperature such as may occur 
in a burning DT fusion plasma, or for very energetic particles such as the D3He proton, the nuclear 
scattering cross section becomes important, because the Rutherford scattering cross section 
diminishes. Monte Carlo has been used in the past to obtain particle range-energy results for these 
cases [Evans & Talley]. 

The other potential application is in the construction of a datasbase of transport matricies. 

Upon specifying a zone geometry and content (p, T,, and B), the analytk results and a single 
numerical trajectory calculation can be transformed repeatedly to build up a collection of weighted 
outgoing particle directions, energies, and times. The fractional contribution of each incoming 
particle to the outgoing particle in a particular distribution is used to build a transport matrix. This 
approach is similar to that of reference [14]. The transport matrix describes the coupling between a 
pair of surfaces that are part of the bounding surfaces that define the zone. Each pair of surfaces 
coupled will have its own matrix, so there will be several matrices per zone, as illustrated in Figure 
-J -. 

outgoing distribution function . 
. 

surf # 1 

> “% ~~~ “M12: (“;:’) 
incoming 

,~~””: i ):;22 ‘ 4--’” 

distribution 
function : 

~% 01 2 
—- etc. ? . 1 01 0 1/2 

—- 
9 

Figure 2. Building a transport matrix. The faces of the zone defined by intersecting 
planes is divided into several sub areas and a chosen number of trajectories are used to get 
the exit directions, energies, etc. 
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Potential Improvement 

Some improvement may be necessary to increase the flexibility of the above results. The analysl> 
of the DT alpha trajectory is based on the assumption of uniform zones. It would be deslreabie to 

handle gradients in the various intensive zone quantities (p, T,. and B). The prospect for a general 
anal ytic approach to gradients is poor, but an efficient numerical approach may be possible. The 
idea is to break up a zone with a gradient into several volume elements and do the transport through 
these zones, each of which has uniform density, temperature and field values that reflect the 
gradient within the parent zone. The results of two successive breakups (N) can be extrapolated in 
l/N to get the result that would have been obtained for very large N. This assumes that the 
gradient can be approximated by many small steps. This assumption cart be tested against special 
cases that have analytic solutions and against a particle tracking code. 
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EXPLOSIVE DECELERATION AND FRAGMENTATION OF METEORITES 
IN ATMOSPHERE 

D. YPetrov. O..YShubin, V.P.Elsukov, J’.A.Simonenko, 
RFNC--J%IITF 

ABSTRACT 

At this juncture there is a series of interactions between meteorites and the atmosphere 
experimentally observed but remained without any coherent reasoning. First of u it is the 
explosion of the Tun.mka meteorite at certain height. Adler this explosion no meteorite matter 
was found. Moreover. in the Earth atmosphere one can regularly register the bursts like fire ball 
of a nuclear explosion yielded of 1 to 100 kilotons of trotyl [1]. This evidences that under 
certain conditions a physical mechanism exists which governs the explosive interaction between 
a meteorite and the Earth atmosphere possessing specific features of the nuclear explosion in 
the air or above ground. There is also no a consistent theory describing meteorite fragmentation 
in the atmosphere. 

The work offers the theoretico-computational model describing the explosive 
interaction between meteorites and the atmosphere, as well as the meteotite fragmentation. 
Fundamental assumption of the theory areas follows. When a meteorite enters the atmosphere, 
it interacts with approach stream of air that results in large-scale loss of hydrodynamic stability. 
This causes meteorite disintegration into several approximately equal fragments. Later for each 
of the fia.gnents resulted the process is repeated - one can observe a chain reaction of meteorite 
liagrnentatio~ the kgrnents being decelerated in the atmosphere. 

This physical model can lead to two consequences. In the fist one, the meteorites which 
have rather small density and size less than critical can reach only certain critical hei&@t above 
the Earth surface. In this case the spatial regio% where the meteorite “pieces” transfer their 
energy to the atmosphere during relatively short time (as compared with flight time), has the 
sizes comparable (with one order accuracy) with the initial dimension of the meteorite. The hal 
size of fi-agments felt down onto the ground according to this scenario will apparently be 
defined by existence of certain minimal size of a particle and/or critical velocity of these 
particles in the atmosphere. Judging on result of the Tunguska explosion the ilnal particles are 
of microscopic dimensions. In the second scenario, when density and dimensions are large 
enough fi-agrnentation process has no time to develop comprehensively. In this case dimensions 
of fi-agments which have achieved the ground, will be macroscopic. For example, the Sik.hote- 
Min event was not the explosive one. 
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1. OVERVIEW’ 

Currently most of researchers use as the initial h}-potheses the theory of gas d~munic 

deceleration and ablation of meteorites in the Earth atmosphere which is described. for 
example. in [2]. The equations it uses are in the following form: 

I M%. .Gp,Svzn (1.1) 

dM —= 
dt 

-~p, sv3 
Q 

(1.2) 

where G. A are unitless coefficients. 
S - effective maximum midsection 
Q - ablation energ of unit mass, 
M - meteorite mass (initial mass ~), 

n - unit vector along trajectory, 
pa - air density, 

v - meteorite velocity. 

In principle, the equations should contain Earth gravity, however, for considering the 
fundamental issues it is not principal character.. 

In [3] for the case of exponential atmosphere the analytical solution ( 1.1 ) in quadrature 
was derived for “spherical meteorite’.. 

Let us consider the major advantages and disadvantages of the theory. 

Advantages 
1. The theory (given appropriate choice of constants) qualitatively well describes 

deceleration of a single meteorite in the middle part of trajectory. 

Disadvantages 
1. As only velocity vs. altitude is knovm from direct experimental observations, then 

there are rather great uncetities in selection of constants in the system (1.1-1.2). This is 
especially actual for determining the initial dimensions, mass, and, respectively, energy. 

2. As it was noted by the author of [6], the ablation equation at certain velocities 
contradicts to the energy conservation law. 

3. The theory does not offer neither qualitative nor quantitative evidences of potential 
fizgmentation of meteorites, meanwhile investigations of meteorites felt down show that 
meteorite tlagrnentation is most probably a rule - singe meteorites are rare. 

4. The theory does not offer the qualitative evidence of meteorite explosion in the 
atmosphere: the Tunguska and Sikhote-Aiin events. It follows from solutions of the system 
(1.1-1.2) that a meteorite loses energy relatively smoothly with height. Moreover, dE/dH is 
smeared practically over the entire atmosphere [3]. 

In some studies the attempts were undertaken to avoid these disadvantages and 
complete the theory [3-6 ]. 

In [3] it was noted that pressure to a meteorite due achieved maxirnurtL if meteorite 
mass did not exceed certain value. In this case pressure of air even to relatively slow meteorites 
can reach great values essentially exceeding ‘~rength 
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authors of [3] describe the process of fiagmentat ion (explosion). phenomenologicall! 
introducing the notion of “fractional pressure” Ph. On their estimates. for iron meteorites P- 
650 atrn. for stone ones P~50 atm. 

To describe the Tunguska event the authors of [4] completed the system (1.1-1.2) w-ith 
the equations describing changes in meteorite cross section while it travels through the 
atmosphere (model cylinder of height h and diameter 2r) under pressure on the tiont surface 
(pressure on the back surface is neglected). It should be noted that in the model. deformation 
and. respecti~ely, ffaggentation begin afier pressure has exceeded compression strength of 
meteorite matter. 

Asteroid fia.gnentation is studied in [5]. As in [3], it is considered that fia-mentation of 
asteroid (or further Ihynentation of its fia-gnents) occurs if pressure exceeds asteroid matter 
strerxgth. In this case cross section of “asteroid” increases with respect to velocity with which 
fiagrnents fly apart in space, which in turn is derived from the relationship for the pressure 
di.fllerence work and kinetic energy of fragments scattered. Fragmentation proceeds repeatedly: 
the next phase begins when radius of the cloud increases twice; it is supposed that in this case 
fractures become wide enou-gh to allow penetration of approach air and each fragment has its 
ow pressure difference. Fragmentation stops if pressure does not exceed strength. From this 
moment each frqgnent gets its own pressure difference and their deceleration in the atmosphere 
is calculated independently. 

The model described in [6] was desieaed as a simple analytical model intended for 
illustrating calculated with the STN code results of the Shoemaker-Levy comet disruption in the 
Jupiter atmosphere. The authors of [6] noted that ablation equation (1.2) at certain velocities 
contradicts to the ener-q conservation law. This is associated with the fact that actually ablation 
mass does not disappear born the system more correct relation for Q is: 

Q= QO++ 

The second term is dominant at v>5k.m/s for all matters of concern for the problem 
under consideration. If one neglects the first te~ the modified ablation equation is: 

d.h’l 
— = -2ApaS . 
dt 

(1.3) 

In additio~ the authors of the model took into account formation of a layer of 
evaporated matter and hydrodynamic expansion of asteroid - a result of Kelvin-Helrnholtz 
instabfin. 

It is e~ident Iiom the above that in order to describe fia-gmentation a.dor explosio~ the 
initial model (system (1. 1-1 .2)) is modified in two ways: 

1. Introducing fenomenological pressure of disruption (references [3,5]). 
2. Deforming a meteorite to increase its resistance and “lead’ it to the explosion 

(references [4,6]). 
In the last case it is a need to complete the model with some constants and assumptions 

which are unknown a priori. It should be noted here that difTerent authors use dtierent 
constants in the initial system ( 1.1- 1.2). Thus, we have to say that provision of the problem with 
constants is beneath criticism (consequences of a very poor experimental data). Hence, there 
are certain doubts whether the physical model and actual picture are adequate. 

In our view, all the above shows that this modification of the initial model is not 
challenging. Mathematical simulation is the most direct way to solve this problem (experiments 
are expensive and ofien impossible). Unfortunately, it is not easy to describe the problem 
complete~ because there is a lack of knowledge in the processes and there are no adequate 
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models of matter. Therefore. the theoretico-computational approach is the most promising 
because even step of the theoretical model is verified by mathematical simulation. 

In the \vork this theoretico-computational approach was implemented for the problem 
of clarfiing the explosion and fragmentation of meteorites and asteroids. 
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2. PH1’SIC.4L MODEL 

2. 1.YL.-LL A PPROXI.M4 TIOh 

The phenomenon of fia-mentation and explosion (since it is obsemed) should not be the 
Win-” physical effect. it should have a simple qualitative reasoning. Therefore. for qualitative 
understanding. most likely. ablation can be neglected in the first approximation because it 
should only strengthen the basic effect. Since fragmentation and explosion do not follow from 
the first equation (1. 1). it is a need in the physical hypothesis which could result in the above 
effects. 

The fbndarnental h>~othesis of the model is the following. When a meteorite enters the 
atmosphere. it interacts with the approach stream of air that results in large-scale loss of 
hydrod}tic stabili~. It disintegrates into several parts approximately equal to one another. 
Then the process reproduces itself - one can observe the chain reaction of meteorite 
fragmentation. the fiagnents being decelerated in the atmosphere. 

We will consider the meteorites in the form of a ball. 
.At iirst. let us assume fia-gnentation proceeds discretely and the time fkom one 

disintegration to another does not depend on both velocity (i.e. we assume that in the ““null 
approximation-’ a meteorite and its fragments are not decelerated) and air density. 

Let us introduce the following desi-gnations: 
~ - meteorite initial radius; 

m - fragmentation step, m=l .2 . . . . . . . . m=O means initial state; 
Rm - radius of a flagrnent at the m-th step; 

‘rm - time from one disintegration to another at the m-th step; 

n - number of fhgtnents; 
~ - time during which a tigment of unit size disintegrates; 
h’ - total number of I@rnents. 

Then one can ~fie the following relationships: 

Rm~-d3% 

7 m=~-ti3~. (2.1.1) 

N(m)==m. 
Respectively, current time tm can be expressed as: 

It is seen born the formula that there exists the 
which is equal to: 

where m-1/3, m >1. (2.1.2) 

ultimate time of meteorite hgrnentation 

(2.1.3) 

If during this time meteorite has not reached the Earth it will naturally disintegrate in 
air. 

Then it is more convenient to transfer from the discrete variable m to the continuous 
one t. Then we derive the following expressions for number and size of fragments: 
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( 1 
is(t)= .3 

(’ 
l+ i 

{ 
() f 

~Rw=Ro&$ 

(2.1.4) 

Since t~ is proportional to meteorite initial size ~. then number of tiagments into which 

it will disinte-grate during this time. will mostly depend on just this parameter and be far less 
sensitive to the rest of (n. ~). 

Following the above, in the “nuW’ approximation the meteorite explosion - 
disintegration into infinite number of fia.gnents - takes place at moment tr Theu if it does not 

reach the Earth surface. the explosion will occur in the air. In this case the reaching condition 
(meteorite critical size) can be estimated from the follovtig relation: tfl,=h/v<t~,, where h is the 

atmosphere height, v is meteorite velocity. From this one can derive the expression for 
meteorite critical size: 

() Ro# l-— 
v-r ‘i- (2.1.5) 

To transfer to numerical estimates, we need to know ~. Generally saying, ~ depends on 
velocih. Looking ahea~ we can say that ~ obtained by numerical estimation for the ice 
meteorite is about 40pticm when velocity is equai to 20krn/s. Given atmosphere height of 
10km. we obtain that I@-60m for n=8. 

2.2. RESULTS OF M THEM TICAL SIMLTL4 TION 

Naturally. any physical hypothesis needs experimental confirmation. In our case it is 
rather dif%cult. Therefore. to verify its plausibility, let us use mathematical simulation. The 
following calculation was performed with 2D hydrodynamic code MECH [7,8] (without 

accounting for ablation). A ball of 1 cm in radius and 1 g/cm3 in density was winded by air flow 

of velocity in 20 krds and density pa=O.OO 129 g/cm3 (air density at sea level). Equation of state 

of the ball matter was taken in the simplest form: 

P = poc:(a -1) , (2.2) 

where P is pressure, 
pO - initial density, 

CO - effective speed of sound (CO=2.5 krds), 

5- compression 
In fact, it is equation of state for ice at small compression and pressure. Really, pressure 

realized in these processes is not higk P=p07=5 kbar. 

Air was considered as ideal gas with y=l .2. 
Figures 2.2.1 -2.2.4 depict gas dynamic flow implemented. 
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Fig. 2.2.1 presents the moment when flow achieved equilibrium. On Fig. 2.2.2 one can 
see how a hole is being formed at the axis of symmetry. On Fig 2.2.3 we see that the initial ball 
has become torus and Fig 2.2.4 shows two ton formed fiorn the first one. So, we see the 
process reproduces itse~ Of course, the problem should be calculated for three spatial 
variables, however, main features of the phenomenon may be seen from 2D calculations. The 
ball has become torus during 40 ps. Apparently, this time is close to the disruption time 
desired and it was used for the estimation of paragraph 2.1. 

A series of runs were proceeded which varied in velocities of approach flow at normal 
air density. Specifically, the values were obtained for resistance coefficient G in the motion 
equation (1. 1), which was fitted on calculated results. 

Main calculated results are presented in table 2.2.1. 
Table 2.2.1. 

Vo, krnls G td, ~S 

5 1.313 193 
10 1.381 84 
20 1.408 40 
30 1.404 29.5 
50 1.219 17.7 
70 1.15 14 
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.% it is seen born table 2.2.1. resistance coefficient is almost constant \\ithin a wide 
rm:e of fitjal ~e]ocjtjes. ce~a~ deviation Ides place at ~gh I“elocjtjes which Cm & easi]) 

explained: at these velocities both pressure and compression are not already small and 
application of the equation of state in form (2.2) is hardly correct. 

q ~ 5 that it is sirnpl~ inversely proportional .4s to time of disruption. it is seen from Fig. ---- 
to initial veloci~-. 
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Fig.2.2.5 

Thus, mathematical simulation verifies on the whole the mechanism used and obtained 
relations and patterns, as well as their numerical values we will use in fhrther development of 
the analytical model and numerical simulation which will be considered in the next section. 

113 

— —.—— .—-. . — 



3. ANALYTICAL ESTIllATES 

3. I. EYPOiJ’E.J71/tL A Ti\!OSPHERE 

W_ith relation to practice. real interaction with exponential atmosphere of the Earth is of 
most interest. In this case the system of equations will be wtitten as follows. 

Equation of motion in ballistic form 
&2 ~GA . —= 
dz 

p,v- , 
Pi13M: COS9 

(3.1.1) 

where z is coordinate above the Earth surface: 
q - angle of meteorite enter into the atmosphere: 
Mm - mass of a fia-gnent at the m-th step; 

P\{ - meteorite densiw; 
Sm A 

A - unitless coefficient defined from the relation — = 
Mm P;WV ‘ 

Sm - maximum midsection square: 

pa - current air density, p, = p,exp(–z / h); 

h - Earth atmosphere height. 
Integration limits in this equation can be defined by the following relation: 
tm-tm. 1 ‘lm_ (3. 1 .2) 

To complete the system of equations. it is a need to write the equation for ~m. For this 

purpose let us introduce the notion of destruction velocity so as 

(3.1.3) 

To continue. on the basis of numerical calculations it is necessary to make some 

assumptions concerning the form of fbnction Vd=l /~(v,Pa). Considering dirnensionality, 

lpcoc 
~= —f(~,; , ~, y, etc. ) (ca- speed of sound in air). As it was shown in paragraph 2.2, 

v PM 
~m- 1 /vO and since prior the disruption meteorite velocity vimies relatively weakly (paragraph 

2.2), one can neglect the dependence on parameters of type c/v<<l. Then 
1 pa 

T=; f(—). 
P%l 

(3. 1 .4) 

Really, when air density is constant. substituting (3.1.4) into (3.1.3) we obtain: 
t. 

‘m-’= t~’f(;)=ll$” 

that agrees with calculated results. 
To facilitate computing, we will consider then that 
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Substituting (3. 1.5) into (3. 1.3) and integrating with respect to z \ve uII obtain the 
follouing relationship: 

BP\, Rm.] cos~ = h(p~ – p~.l) = h~pm . (3.1.6) 

\~here p~=p,(z~). 

If we integrate equation (3.1) over z from z~., to z~ . we vill obtain: 

Combining (3.1.6) and (3.1.7): 

H GA \. = 
m J’ ~_, exp – 

[-1 
,3 B = v~_lf 

4R 

3 

(3.1.7) 

(3.1.8) 

and 

Vm=vofm 

Respectively. energy loss is: 

Afler m acts of fia.gnentation the meteorite will lose the following amount of energy 

() AE(m)=-Eo l-~ >f’” =Eo(l-f’m). (3. 1 .9) 
n-l 

To clari.@ the issue on distribution of energy losses over heietit, let us return to formula 
(3. 1.6) and revtite it for variables ~ and x: 

R 
Ap~ = BP%I +x”-’. 

Hence we have the equation: 

e-z=’h _ e-Z.-IYb = B PM ‘o ~111-I = gxm-l 

Po h 
so, 

m 

e-z=~b = z 
e-~’b +5 xn-’, m 21. 

B=I 

Assuming q++a and SLlmmiIl g the series, we obtain: 
m 

z 1-X* 
e-z=ib ~ x“-’ = ~— =: ,m 21. 

a=l l–x 

W’hen m+=, meteorite will reach only finite height 

(3.1.10) 

(3.1.11) 
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If zf<O. meteorite fragments will fall down onto the Earth. if ~0. meteorite will explore 

in air. On results of calculations of paragraph 2.2. B-O. 1. Then critical radius of the ice 
meteorite makes up about 50 m. 

Using the above formulas. the calculations were proceeded for the ice meteorite of 30m 
in radius and velocity of 20 Ian/s normal to the Earth surface. Kinetic energy of such meteorite 
makes up 5.4 Mt. Figures 3.1.1 -3.1.2 depict how meteorite kinetic energy depends on 
and time at the moment of fragmentation. 

height 

AlSitu&. km The. S 

Fig. 3.1.1 Fig.3. 1.2 

k it k seen. the first fragmentation occurs at height of -10 kq afler 5 acts of 
fia-gnentation it is already at the ultimate height of 4 km where it disintegrates completely. Near 
this hei-@t during the time of -0.01s energy of 1.5 Mt is king lost along the distance of about 
loom. 

The issue remains on the character of energy release in this process. We have fded to 
derive the explicit analytical expression for exponential atmosphere and thk model. However, 
due to the fact that almost all energy loss is concentrated within narrow range of heights: 50’?40 
of ener.~ is lost at 1 h then one can accept the atmosphere has constant density in this 
region. Solution of such problem is offered below. 

3.2. A TIUOSPHERE OF CONSTANT DEA’SITlr 

Likewise paragraph 3.1, inte~ting the equation (3.1.1) over time, we obtain: 

(+-)=&! :_,(tm-L*). 
m 

To deri~ the explic~~~malytical formula for function E(t), we will use formula (2.1 .1): 

~ =~.n- 
m %’ %= ~. Then 

() 11 

() 

1/3 

—_ — 

v 
.U=GA~~ 2 

m v m-l pM 47t . 
(3.2.1) 

Generally saying, as it was shown above, this is not correct. Really the right part of the 
last equation should be inversely proportional to Vml (in this case formula (3.2. 1) becomes 
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(3. 1.8 ) at small a ). In fact. this results in sio~ver ener~ losses born one fragmentation to 
another. Holvever. since in the model described the time horn one disintegration to another is 
understated as compared with exponential atmosphere. one could anticipate compensation and 
hope the approach vill give not bad estimate. 

It follows from formula (3.2.1) that: 
., 
‘o \. 

‘=l+mavO - 

Hence. 

‘m=EO[[l+m’ao]-l) 
and meteorite kinetic ener~ is: 

EO-E(m)=Eo-~AE. = 0 ,. 
k=l [1 +:avo] 

(3.2.2) 

Transferring from variable m to time with the use of relation (2.1.2) 

ln(l-t/t~) m. 
lnx 

we obtain: 

E, 
E(t) = 

[ 1 ln(l-t/tr) . 
(3.~+3) 

1 + uvO 
lnx 

W%en t+t~. dE/dt+-x. It is the explosive process. 

Generally saying, in formulas (3.2.1-3.2.3) some effective parameters (EO, VO, t~) should 

be “sewed” with the solution for exponential atmosphere. 
Really rate of energy loss is surely limited. Most likely. its maximum value is determined 

by finite size of macro particles and/or by fi.nitness of velocity. 
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4. COIIPARISON OF ANALYTICAL ESTIMATES W’lTH RESULTS OF 
MATHE31ATICAL SIMULATION FOR EXPONENTIAL AThlOSPHERE 

To veri.& validity of estimates offered in paragraph 3.1. the interaction of meteorite with 
the Earth atmosphere was computed. Initial conditions were as follous: at height of 25.5 km a 
meteorite of radius in 30 m had initial velocity of 20 Ws. 

The run showed that the destruction has occurred afler 0.5 11s. i.e. tier the asteroid has 
covered -10 km. Deceleration coefficient made up G=l.3 indicating that it depended on 
atmosphere density. 

It should be noted that the estimation with the formulas of paragraph 3.1. gives the 
results which somewhat differ from those obtained through mathematical simulation: The fist 
fia-grnentation occurs at the height of 8.64 km in 0.81 s. This evidences that everything goes 
faster in mathematical simulation. This might be reasoned by the fact that in analytical estimates 
of the disruption model we considered that disruption time vs. density is -pa. actually it may be 

not so strong. 
Since the anal-ytical estimates of explosion strength have appeared even less optimistic 

than results of mathematical sirnulatiom it has meaning to consider the problem of the Tunguska 
explosion from anal~~ica.1 standpoint. 

Let us consider it was a ball of 46 m in radius. 20 krris spee~ entry angle of 43 ‘O. Total 
ener=q was 20 MT. 
Trajectory is shown in Fig.4. 1. 

10 203040 m6070mm la 

Y, ml 

Fig.4. 1. 
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Fig. 4.2 and 4.3. depict energy vs. height (here the first point corresponds to the first 
f@menta[ion) 

18 . 

14 . 

1s . 

Altitusk (Z). km -nSmc. s 

Fig.4.2. Fig.4.3. 

Ultimate height achievable by the meteorite fragments is 3.24 km. As it is seen from the 
plots, about 8 Mt of energy are released by the explosion. 

To illustrate the capabilities of the model proposed, let us compare it with both 
hydrodynamic model and hydrodynamic model with ablation. Ablation coefficient was taken 
from [2]. The calculations were done for the ice meteorite which was 20 luds speed and had 
energy of 5.4 Mt. 

Dependencies of typical quantities are presented in Fig. 4.4-4.7. 
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Fig. 4.7. 
It is seen born the plots that the model proposed offers qualitatively new results. In 

hydrod)marnic model and model with ablation meteorite reaches the Earth surface With 
‘smooth. release of energy. while in the mechanism proposed it “explores” at finite height. It is 
also seen ablation affects trajectory not essentially. At the same time, if the model is completed 
with ablatiom energy release due to less radii will proceed fmter. 

THE BOTTOM LINE 

Theoretico-computational model of the asteroid explosion and fragmentation in the 
Earth atmosphere has been designed. Fundamental assumptions of the model are as follows. 
When a meteorite enters the atmosphere, it interacts with approach stream of air that results in 
large-scale loss of hydrodynamic stability. It disintegrates into several approximately equal 
@merits. Then each of the fiagrnents reproduces the process - one can observe a chain of 
fia-gnentation and deceleration of the meteorite in the atmosphere. Based on the mechanism 
propose~ radius of the ice asteroid which can achieve the Earth surface was estimate. it is -50 
m Really. as it follows from mathematical sirnulatiou this radius is smaller. If the meteorite 
does not reach the Earth surface, its energy loss is of explosive character - the most portion of 
energy is lost at the distance of several meteorite typical sizes. 

Based on the results obtained the areas for fhrther research can be defined: 

1. Effects of matter (ice, stone, iron), as well as its porosity on fragmentation. 
2. Effects of meteorite (asteroid) form on fragmentation. 
3. 3D mathematical simulation of fragmentation processes. 
4. Comparison of experimental observations in explosions in the atmosphere with results 

of mathematical simulations and the estimations with the analytical model. 
5. Cal.hation of physical models and mathematical codes with experimental results. 
6. Detailed study on how the resistance coefficient and disruption time depend on air 

densi~. 
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Experimental Facts: 
. burst of Tunguska meteorite; 
. flashes are recorded similar to fireball of nuclear explosion with 

the yield of 1-100 kT of TNT. 

123 

——. — —.-. —.. 



1. 01’ERVIE\J’ 

Initial system 
‘ dv 

/ 

M%= –Gp~SvJn 

dM L — - .6 P=SV: 
dt - 

.4dvantages: 

1. This theory describes quite well deceleration of a single meteorite 
at the intermediate part of trajectory (under appropriate selection 
of the constants). 

Disadvantages: 

1. Rather large uncertainties in selection of system constants. 
z. At some specific velocities equation of ablation contradicts the law 

of ener~ conservation. 
~. Opportunity of meteorite fragmentation does not succeed. 
d. Opportunity of meteorite abursb} in the atmosphere does not 

succeed: dE/dH spreads over the whole atmosphere. 

Two ways of modification: 
]. Phenomenological pressure of destruction is introduced. 
~. Meteorite is strained in order to increase its strength and dead ton 

burst. 

These modifications of the initial model are not promising. 
Mathematical modeling is the most direct way of solving the problem 
(because experiments are too expensive and often impossible). 

The most promising way is simulation-theoretical when each 
step of physical model is verified with mathematical calculations. 
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2. PHYSICAL MODEL 

z.] ZERO APPROXIM.ATIONT 

Principal Assumption of the hlodel: 

\\’hen meteorite enters the atmosphere, it interacts with a 
windstrearn and this results in a large-scale loss of hydrodynamic 
stabiiity of the meteorite. It disintegrates into several nearly equal 
fragments. Later this process reproduces itself - chain reaction of 
meteorite fragmentation, and deceleration in the atmosphere are 
observed. 

Meteorite is a sphere. 
Fragmentation is discrete and interval between two 

fragmentations does not depend on velocity and air density. 
Assume n to be a number of chunks resulting from 

fragmentation. 
Final time of meteorite destruction is: 

‘vi 
tr=~-RO - 

ti-1 

Number and sizes of the chunks are calculated in the following 
way: 

I 
N(t) = 

1 

() 

3 

1-: 
r 

() 
R(t)=RO l+ 

f 

<<Bursh} of meteoritq i.e. disintegration into an infinite number 
of fragments, occurs at the moment tf. If meteorite does not reach the 
Earth’s surface by this moment, the burst will occur in the air. 
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79RESULTS OF ~f~THE~~ATIcA~L ~l(_jDELI~G 

Assume, that meteorite is of unit size and unit densi~. 
Equation of state is 
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3. AN4AL}’TIC.4L ESTIhl.4TES 

Integration limits: t= - t=., = T= 
. tm 

IJ dt 
v~dt = = Rm_, . 

*m_, ~(v>P= ) %.1 

Ipcoc 
Proceeding from dimensionality ~=–f( + — ‘,y, etc.) 

v p\ f’v’v 

Assume, that 
lB& 

. 
v P\l 

Integrating : Bp\lRm_, ~S~ = h(P. – Pm-,)= hAPm and 

( ) 

.[[-1 ~ 
GA 

v vm_, exp – = ,, B = vm_,f m 
4X 

3 

() AE. = EOf2- 1 -+ 

After m fragmentations meteorite will lose the following amount of 
energy: 

() AE(m)=-EO l-~’$f’” =Eo(l-f’”) 
❑ -l 

Using variables ~ and x=n-in for cos~=l we obtain the following 
relations: 

If m+m, meteorite will be able to reach only a final altitude 
1 l–T 

l–x 
z~.h-in—= h.lnBp:fo 

c 

P, h 
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Calculations show that B-O.1. In this case critical radius of the ic~ 
meteorite will make up about SO m. 

Similarly to the previous case: 

(+ ) 1 
— - ~yM~:, (tm - t..,) 
v– 

m–l 

For explicit analytical dependence E(t) the following formulas are 
used: 

Tm “R,, =T. n-m’ R= = n-- “~Ro 

Then 

This leads to 

- less energy 10ss at fragmentation; 
- longer time interval between fragmentations. 

Balancing can be expected and this approach will, probably, give a 
good intimate. 

E(t) = 
EO 

[ 

In(l-t/tr) 
1 + avO 

lnx 1 
For t + tf, dE/dt + -m. This is an explosive process. 
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4. CONIP.4RISON OF .4N.AL}’TIC.4L ESTIhl.4TES WITH 
THE RESULTS OF hl.4THEhL4TIC.AL MODELING 

Initial conditions are the following: at the altitude of 25.S km 

meteorite of 60 m in diameter had the initial velocity of 20 km/s. 

Mathematical Calculation 
modeling 

Time of destruction, s 0.511 0.81 

Altitude of 15.5 8.64 
destruction. km 

Burst of Tunemska meteorite from the analytical viewpoint: 
sphere had radius of 46 m, velocity of 20 Ire/h, angle 

incidence of 45°, total yield of 20 MT. 

AltitIl& WA bx 

Fragments of meteorite can 
km. 

Explosive process results in 

of 

maximally reach the altitude of 3.24 

the Ioss of about 8 MT of energy. 
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CONIP.4RISON OF DIFFERENT N1ODELS 
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CONCLUSION 

Based on the results obtained, directions for further research 
can be determined: 

] Effect of material type (ice, stone, iron) and porosity on the 
process of fragmentation. 

z. Effect of meteorite (asteroid) form on fragmentation. 
~. 3D mathematical modeling of fragmentation processes. 
~. Comparison of experimental observations of bursts in the 

atmosphere with the results of mathematical modeiing and 
calculations according to the analytical model. 

j. Calibration of physical models and mathematical codes on 
the basis of experimental results. 

6. Detailed study of how resistance coefficient and destruction 
time depend on air density. 
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Implementation of Numerical Simulation Techniques in Analysis of the 

Accidents in Complex Technological Systems 

G. S. Klishin, V. E. Seleznev, %7. V. Aleoshin, Russian Federal Nuclear Center-VNIIEF, Russia 
Presented by P. I. Pohl, Sandia National Laboratories, Albuquerque, NM 

Gas industry enterprises such as main pipelines , compressor gas transfer stations, gas 

extracting complexes belong to the energy intensive industry. Accidents there can result into 
catastrophes and great social, environmental and economic losses. Annually, according to official data 
several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention 

of the accidents, analysis of the mechanisms of their development and prediction of their possible 
consequences are acute and important tasks. 

The accidents reasons are usually of a complicated character and can be presented as a complex 
combination of natural, technical and human factors. In the RAO “GAZPROM” there is a subdivision 

of the reasons of accidents into the following groups: 

● environmental interference; 

● defects and drawbacks of the pipes and auxiliary equipment manufacture: 

. mistakes in the pipelines operation: 

. damages during the pipelines construction; 

● unauthorized interference in the gas pipes operation. 

Mathematical and computer simulations are safe, rather effective and comparati~fely 

inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a 

failure occurrence and development, to assess its consequences and give recommendations to prevent it. 

The difficulties in mathematical and computer simulations of accidents at the pipelines objects can be 
explained by : 

. a ~ide spectrum of the failures reasons and consequences: 

. the variety of the accidents mechanisms and ways of their development: 

● an integrated influence of the damaging factors. 

Besides investigation of the failure cases. numerical methods play an important role in the treatment of 
the object’s diagnostics results and in fhrther construction of mathematical prognostic models of the 
object behavior during the period of time between hvo inspections. 

While solving the diagnostics tasks and in the analysis of the failure cases. the techniques of 
theoretical mechanics. of qualitative theo~ of differential equations. of mechanics of a continuous 

medium , of chemicaJ macro-kinetics and optimizing techniques are implemented in the Conversion 
Desi&m Bureau #5 (DB#5). Both universal and special numerical techniques and software are being 
developed in DB#5 to solve such tasks. Almost all of them are calibrated on the calculations of the 
simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is 
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\vorth noting that in the long years of \vork there has been established a fruitful and eflecti~re 

collaboration of theoreticians. mathematicians and experimentalists of the institute for solution of such 
tasks. 

Let’s consider in more details the approaches and mathematical simulation techniques 

implemented in DB~5, VNIIEF for the pipelines failures analysis. Big movements. shifts and spread of 

the construction elements of the pipeline equipment during an accident can be well described ~vith the 
help of the theoretical mechanics equations. Theoretical mechanics techniques are often used during a 
simplified numerical analysis of the equipment behavior in the emergency mode of operation. 

For example, with their help the oscillations of the air column between blades of the 
compressor. located at the compressor gas transfer station, during the surge can be described in the first 
approximation. The task of the surge simulation in this case can be presented as the analysis of a usual 
system of differential equations with the given boundary conditions. This analysis is done in 
accordance with the qualitative theory of differential equations. It makes it possible to evaluate surge 

stability and character, to predict the accident development. Figures 1.2 show an example of the surge 

phenomenon analysis with the help of computer simulation performed for GTU- 160, that is located in 
one of the shops of the compressor station <( MorkinskayaJ>, {(Volgotransgaz)) subsidiary. 

In investigation of f~es. a combination of three-dimensional finite element and one-dimensional 
finite difference models is often implemented. They are investigated with the help of the finite element 
techniques (FET) and finite difference techniques. Let’s consider this approach using the following 
example. The gas pipe in the building is ruined, a combustible mixture of methane and air is formed. It 
has filled the building inside. There was a heating source in one of the rooms of the building. To 
analyze the possible inflaming of the combustible mixture, there were performed non-stationary three- 
dimensional thermal calculations with the help of a finite element technique. In three-dimensional 
thermal calculations a gas mixture was assumed as an inert one. This approach in the analysis of the air- 

methane mixture heating is quite authorized, as the processes of the mixture enflarning take place in a 
very narrow layer adjacent to the heater. (As a rule, the thickness of the heated layer is considerably 
less than the distance between the adjacent joints of the ftite element ~gid (&graticule) implemented in 

thermal calculations). 

So, at every time step of the finite element technique, after three dimensional thermal areas were 
calculate~ the most heated micro-volumes of the combustible mixture were selected. In these volumes 
the combustible mixture was considered as a mixture where exothermic chemical reactions take place. 
We performed one-dimensional non-stationary thermal calculations with consideration of kinetics of a 
chemical exothermic mixture decomposition to assess the possibility of enflarning of the selected 

micro-volumes. Here finite difference techniques with the adaptive grid were used. 

As a rule, in an emergency at the gas pipeline, the magnitudes of one or several parameters 
characterizing the design of the equipment or its operation, reach their extremes. That is why, in 
simulation of emergency cases at the gas pipelines optimizing techniques are widely used in VNIIEF. In 
this case, a target fimction of the optimizing task describes critical parameters of the gas transfer 
system as a fhrtction of control efforts induced on the pipeline equipment. Task limitation functions 
reflect constructive and technological limitations of the pipeline equipment or the gas transfer process. 
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Taking into account the complexity of the gas pipeline systems, the target fimction and the limitation 
fhnctions are non-linear multi-parameter finctions. The problem of gas transportation operating costs 
reduction can also be presented as an optimizing task (Fig. 3,4). So. we are fining the need to solve a 
non-linear multi-parameter task of a conditional optimization, that looks like: 

F(X)=>rnin, G(X)=O, P(X)>O, A > X > B, 

where F(X) is a target function, G(X), P(X), are given limitation functions, X is a vector of controlling 

influences, A, B are the given vectors that belong to the n-dimensional Euclidean space. For solution of 
optimizing tasks a library of optimization programs is developed in DBH, VNIIEF. Original algorithms 
of solution the tasks of linear, non-linear and mini-maximum optimization are realized. Special 
algorithms to analyze the obtained solution for its extremity are developed. Many years of work with 
the optimization library confiied its operability and sufficient effectiveness of the algorithms in it. 

Besides the analysis of different accidents at the gas pipelines, mathematical simulation 
techniques, that were originally developed in RFNC-VNIIEF for to solution of the tasks of gas 
industry and pipeline transportation, could be implemented in : 

● the analysis of the main pipelines state; 

. localization of the places of the pipeline destruction; 

● in creation of new generation information and control systems for pipeline transportation. 

Figure 1. Stable Equilibrium System State 
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Let’s consider implementation of numerical simulation for assessment of the pipeline state that 
is based on the results of the external and internal pipe diagnostics. To evaluate the state of the main 
pipelines from the point of view of their strength an external pipe and internal diaqostics is 
performed from time to time. In the DB##5, RFNC-VNIEEF pipeline state assessment from the point of 
view of their strength is usually performed with the help of the techniques of the continuous medium 

mechanics, in particular FET that is widely used nowadays. Here the approach is based on a 
consequent implementation of the beam models, shell models and voluminous ftite element models. 

Calculations on the beam models (Fig.5,6) and shell models (Fig.7,8) are of evaluating character are 

mainly used for specifications of boundary conditions for FEM calculations 

Figure 5. Actual Displacement of the Pipeline as Compared to the Designed One 

.—.. 

Figure 6. Stress Intensi~ at the Pipeline Section 
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Figure 7. Deformation of the Pipeline Curve Where A Corrosion Defect is Located 
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Figure 8. Stress Intensi& at the External Side of the Pipeline Cume Where A 
Corrosion Defect is Located 

basing on the ftite element model (Fig.9). This approach allows to consider the deformation influence 
of the whole pipeline section on the stress and strain state in the defective zone. 

Figure 9. Stress Intensity in the Defective Zone 

Analysis of the calculation results allows one to make a conclusion. based on the criteria of 
strength and destruction. about the carrying capability of the defective pipeline section. This conclusion 
serves as a basis for decision about this section replacement, repair or prolongation of its semice 
lifetime. 
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Abstract 

One finds that the conventional exponentiated split operator procedure is subject to 

difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By 

rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference 

equations, one can find a propagation algorithm for three dimensions that looks much like the Crank- 

Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial 

differential equations. We report investigations of this novel implicit split operator procedure. The 

results look promising for a purely numerical approach to certain electron quantum mechanical 

problems. A charge exchange calculation is presented as an example of the power of the method. 

I. Introduction 

The potential of fast computers to solve difilcult full-dimensional problems prompted us to 

investigate some modem finite-difference methods for solution of partial differential equations of 

interest, among these the time-dependent Schrodinger equation (TDSE). One of the more interesting 

choice methods for integration of the TDSE1 is the exponentiated split operator procedure (ESOP),”2 

based on the use of the fast Fourier transform (FFI’), which has been successfully used for vibration- 

rotation spectral analysis and simple scattering situations.’ “3”4. 

Electronic processes such as charge transfer, excitation, and ionization involve the Coulomb 

interaction which makes the numerical representation of the wave function more difficult than in the 

molecular dynamics studies .2’3’4 We find that the ESOP tends to be very sensitive to the integration 

step size in Coulombic problems: the solutions become inaccurate very abruptly as the time 

increment is increased. Overall, one would prefer a method with the inherent stability of implicit 

numerical procedures which, although inaccurate for large step sizes, remain stable and acceptable in 

overall character. We review the ESOP and introduce a novel numerical method, the implicit split 
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operator procedure (ISOP), which is reminiscent of the Crank-Nicolson (CN) and altemating- 

direction implicit (ADI) methods5 for integrating the TDSE. 

The TDSE is written as Y = – i H V in Hartree atomic units (denoted au). The 

Hamiltonian operator is: 

H= T+V, T= _+# (1) A“ 

where the potential V is a function of position and time. The ESOP formulates the numerical 

integration as the repeated application of the factored (split) incremental propagator: 

‘t+dt = exp(–~iTdt) exp(–iV tit) exp(–}iTdt) Yt . (2) 

By using the speed of the FFT to convert from the space to momentum representation and back, one 

can always apply diagonal operators to the wave function. The ESOP conserves norm but not energy 

due to the lack of commutation of the incremental propagator with the Hamiltonian. The procedure 

is correct through order (d) 2. 

In certain atomic physics applications we found that the truncation error in the ESOP grew 

faster than we could tolerate with time steps that would have appeared to be adequate for a second- 

order-accurate method. These were applications with a Coulomb potential and a hydrogen 1s orbital 

as a part of the wave function. We begin by writing down the second-order-accurate, time-s ymmetric 

form of the finite difference advance in the TDSE, analogous to the CN procedure: 

(3) 

A direct numerical solution of Eq.(3) is impractical due to the difficulties in resolving the implicit 

part of the operator, even with the use of ADI techniques. The truncation error in Eq.(3) is O(dt) 3, 

which is precisely the same as in the ESOP in Eq.(2). What is desired is a use of the fast Fourier 

transform (FFI’) methods for resolving Eq.(3) by splitting the space and momentum parts of the 

Hamiltonian. One way to do this is to rewrite Eq.(3): 

l–$i Hdt 
‘t+dt = Wt (4) 

l+~i Hdt 

and to factor the propagator quotient approximately, all the while maintaining accuracy through 

0(dt)2 precisely as in Eq.(2): 

(5) 

The advantage of this factorization or splitting is that the operator is now a product of 

momentum and coordinate dependencies which allows the ~ procedure to be applied as in the 

ESOP. The form in Eq.(5) is our implicit split operator procedure (ISOP)6’7. 
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II. Numerical Study of Stationary State 

Our first numerical study compared calculations on the stationary 1s hydrogen atom ground 

state with the ESOP and ISOP methods. We used computational cubes of 10, 20, and 40 au on a 

side, all with an FIT grid of (64)3 , symmetrically centered about the Coulomb singularity. The time 

solution went from zero to 200 au. The space points were element centered and quadrature were 

performed by the trapezoidal rule. We varied the time increments dt from 0.02 to 0.5 au. 

What we found was that the ESOP calculations were unstable with diverging energy for dt = 

0.05 in the 103 box, for dt=O. 1 in the 203 box, and for dt = 0.5 in the 403 box. The ISOP was stable 

for all boxes and space grid sizes for all these time increments. Note the resemblance to a “Courant- 

Iike” condition in the fact that a larger space increment allows stable integration with a larger time 

step for the ESOP. Of course the accuracy is not as good for the coarser grids even in the ISOP. A 

detailed examination of the numerical ESOP wavefunction shows that the unstable propagation error 

is rapidly varying in space and thus appears in the kinetic energy. 

111.Numerical Study of Charge Exchange 

Quantum charge exchange is a notorious multi-arrangement-channel scattering problem of 

great mathematical and numerical complexity. Even the simple idea of expanding in atomic orbital 

and/or molecular orbital bases is complicated. We have done a small set of charge exchange 

calculations of protons on H in the mixed classical-quantum picture. Our results agree quantitatively 

with experiment and the best prior theory. The potential energy for two moving nuclei is written as: 

V=– Za/ra(t)– Z~ /r-(t) . The presence of ionization in fast collisions requires us to put 

absorbing boundaries on the computational box. In so doing the periodic boundary conditons of the 

FIT do not cause interference within the free unbounded ionized channel. One of the most 

impressive aspects of the present numerical treatment of the quantum charge exchange problem is the 

simple and straightforward formulation of the theory. The Figure illustrates a slice through the 

nuclei of the modulus of the wavefunction after the collision with a relative velocity (v) of 1 au and a 

collison impact parameter (b) of 1 au. Part of the ionized electron is still leaving the vicinity of the 

scattering center. 

IV. Discussion and Conclusion 

To conclude, we feel that the improved stability and energy conservation of the ISOP affords 

direct numerical approaches to the solution of certain quantum mechanical problems. Some of these 

problems are: strong-field excitation and ionization, charge exchange, muhichamel reactive 

scattering, and wave packet dynamics. The new massively parallel computers can make such 

approaches practical. 

Appendix 

A uniformly spaced cartesian grid with points centered about the Coulomb singularity 

defines its own cutoff of the potential. However one can see that an arbitrarily positioned gridwork 
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can create a large error in the numerical representation of the potential operator if a grid point lies too 

near the singular point. We make the following argument for the modification of the Coulomb field 

when used with the FFT grids. Consider the integral over a spherical volume of radius R centered 

about the singular point of the potential: If we equate the spherical volume element to the volume of 

a rectilinear cartesian volume element, W = ah x dy X dz, we find for the sphere’s 

1’3 If we now equate the integral over the Coulomb singularity to the radius: R = (3dV 14x) . 

trapezoidal value of that integral with a cutoff of r. imposed in the Coulomb potential, we have 

2KR2 =(1/ r,) (d-x)3, from which we can now solve for rX using the above value of R: 

rX = (2dV 19Z)1’3 . The Coulomb potential is simply evaluated with r = max[r, r,] . 
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Introduction 

PRIZMA code [1] is intended for Monte Carlo calculations of linear radiation transport 
problems. The code has wide capabilities to describe geometry, sources, material composition 
obtain parameters speci.fled by user. There is a capability to calculate path of pmicle cascade 
(including neutrons, photons, electrons, positrons and heavy charged particles) taking into 
account possible transmutations. 

Importance biasing scheme [2] was implemented to solve the problems which require 
calculation of fimctionals related to small probabilities (for example, problems of protection 
against radiatio~ problems of detection, etc.). The scheme enables to adapt trajectory building 
algorithm to problem peculiarities. 

The scheme was developed employing idea of step-by-step calculation of complicated 
problems according to which initial problem is split into several subproblems which are solvable 
and are solved successively (results of the first subproblem become input data for the second and 
so on). Main drawbacks of this way of solving are, first, error emerging due to data conversion at 
the moment of transit from one subproblem to another and, second, uncertainty in estimating 
statistical error of the iinal result. 

Scheme implemented in PRIZMA code enables to obtain final result in one through 
calculation and use splitting into subproblems in order to use methods of non-analog modeling at 
different steps. 

For this purpose we defied four classes of problems with simple relations between source 
and detector (elementary problems) so that majority of conventional problems of linear transport 
theory can be reduced to some combinations of them. Schemes of non-analog modeling and 
principles of building approximate importance fi.mction and appropriate non-analog distributions 
were selected for each class of problems, Special tool for “calculation control” was created 
allowing to transit from one elementary problem to another during the process of building 
trajecto~. 

Non-analog modeling 

When solving integral-differential Boltzmann transport equation we deal with two forms of 
its integral representation written for density of particles (density of collisions) prior to collision 

vP) and after it x(p): 
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Y(P) = JK(P. P’)* Y(P’)CZP- l#l(P) (1) 

(2) 

Here 

P = P {r,fi, E, t } - is phase space point characterized by the position r, direction fi, ener~ E 

and time t; 
Y](P) - is density of first collisions; 
K(P,P’) -is transition kernel from point P prior to collision to point P; 

~o(P) - is distribution density of the source; 
L(P,P’) -is transition kernel from point P after collision to point P’; 
In the course of building trajectories transitions take place t?om one form of integral equation 

to another and vice versa. 
In practice importance biasing scheme should be implemented as follows: 

1, Calculate approximate impomnce fimction meeting functional of the problem under 
consideration. Approximate importance flmction should be rather simple in order to provide 
appropriate nonanalog distributions. 

2. In compliance with the importance fimction obtained build nonanalog distributions with 
parameters selected to minimize fluctuations of particle statistical weight w. 

3. Introduce special procedure into random walk scheme allowing to eliminate fluctuations of 
ptiicle weight: reducing statistical weight w to the value of weight fimction W(P) which is 
inversely proportional to importance function. 

Importance biasing scheme in PRIZRIA code 

Elementary problems 

PRIZMA code employs estimate “on visits”, i.e. result is recorded only if particle passes 
throu.@ the region of detection. In this case statistical emor of estimate of any fictional will be 
large if probability of particle hitting detector is very small. Consequently, to estimate any 
functional it is necessary to model trajectories in such way that to increase the number of 
particles hitting the detector. This means that it is necessary to increase artificially both density of 
collisions in the vicinity of detector and inside detector and density of particles moving to detector 
and its vicinity. Thus, problem of estimating any fictional is reduced to the problem of 
estimating solutions v(P) and x(p), ignoring dependence of importance fhnction on the form of 
particular fictional. 

Each of these two groups of problems has its own peculiarities but they are related since turn 
into one another in the course of modeling. Problems of each group are also divided into two 
groups. Totally there are four classes of problems to solve which it is necessary to apply 
nonanalog modeling: 
1. Radiation transport in optically thick medium. Calculation of density Y(P). 
2. Radiation transpoti in optically transparent medium, Calculation of density Y(P), 
3. Radiation transport into detector located in vacuum or absolute absorber. Calculation of 

density x(P). 
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4, Radiation transpofi imo cieteaor located in emitting and scattering medmm Caicuiatlon Of 

densl~ x(P j 
Problem falling imo one of these classes with simpie relation berween source and detector IS 

referred to as element~. Alost problems of linear radia~ion transport theo~ can be reduced to z 
combination of elementary probiems. 

Importance function 

For the simplest case (one-group (with constant energ) radiation transpofi problem in 
homogeneous infinite medium with point isotropic source) the foliowixg relation can be obtained 
based on reciprocity law: 

Y; (r)= Yr(rd) (3) 

where w and w“ are solutions of direct and adjoint equations; 
r is source point, 
rd is detector point. 

To caicuiate wei-tit function W(r), importance flmction v is normalized to its value at the source 
point rO: 

Yr(r, ) 
Y’(r) =~- 

W(r) - Yro (rd ) 
(4) 

For the problems with arbitrary geomet~, medium properties are symmetrized in accordance 
with ID geometry (plane, cyhndric or spherical) spectied by detector geomet~. But it is required 
to meet the following condition : 

Y,(rJ)2 maxyE(~. ), E,zd Es 

where S is a set of pairs of points matching pair r, r~ in ID geometn 
For spectral problems approximate solutions of one-group problems are used 

Yr(r,,,E) 
Y’(r, E)= 

Yr,(r., E, ) ‘ 

where Yr(r~. E) is non-increasing tlmction of E. E. is maximal source energ, 

and the following condition should be satisfied 
Yr(rJ,E, ) < Yr(rd,E, ) 

where El is incidence ener=~, E2 is secondary or scattered ener-q 

Similarly, expression for importance fimction x born equation (2) is as follows 

X, (rd .fi) 
X’(r,fi) = 

Z,O (rd ,fi) 
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Schemes for elementary problems 

For specified classes of eiement~ probiems impommce functions and brief description of 
applied methods are given below 

Class 1. Problems of radiation transpon m optically thick media 
Importance iimction reads as 

(9) 

where r is distance from a current point to detector; 
ro is distance between source and detector; 
CO=C(EO). where Ec, is maximal energy of the source. 

And C(E)< S’(E)< S(E), where Z@) is total macroscopic cross-section of interaction C(E) and 
S’(E) are non-increasing functions and C(E) and rd are selected to satisfy conditions (5), (7) 
Nkin methods of calculations are geometrical splitting and exponential transformation. 

Class 2. Problems of radiation transport in optically transparent media. 
Importance fimction is 

(lo) 

where 4~ is optical thickness of the system (AT<< 1 ). 
Main method of calculation is method of forced collisions when density of collisions in the 

medium is artificially increased. 
Class 3. Problems of detecting with detector located in absolute absorber (or vacuum) at a 

rather large distance from emitting and scattering medium. 
Importance fimction is specified in the form 

(11) 

Au, = l-/., pO=~(r~-R~)/r~ , ro, ro is minimal distance from scattering medium to 

center of spherical detector with radius ~; 
o is a set of directions from point r to spherical detector. 

Main method applied is method of ‘lest” particles in which two ptiicles instead of one 

the 

are 
emitted born escape point. One of them moves in a cone of directions m its escape angle with 
respect to direction to detector is selected iiom uniform distribution 

1 

I–/ld 

where M is cosine angle between tangent to sphere of ~ radius born point r and direction to the 
center of detector. 

Escape angle of the second particle results from physical distribution sampling within the 
range (-1, 1 ) with failure: if selected direction is within tu then particle is considered to be 
absorbed at the escape point, otherwise it continues motion with the previous wei-tit, Extension 
for m detectors is allowed. 

Class 4. Problems of detecting with detector located in emitting and scattering medium, 
Importance function is the following: 
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Au, I -P. 
~’(r.fi) = —=— (12) 

Apr, 1- p,, 

where r is distance between current point and detector center. 

r~ is distance between source and detector center, 
A is cosine angle between particle direction and direction to the center of detector 

A, = ~l((r~ – R;) ir~) 

[ R~, rP~R 

r~={ rn, R. ~~c ~r, 

I 
( ro , rc > r. 

i 

‘rJ(l-pz), @O 
rc = 

r, /lso 

(13) 

Main method of calculations is method of concentric detectors which impiies the foliowing 
All space is covered with the net of m concentric spheres (detector is the first of them) 
R=RI<Rz<. .~~, 

Assume that it is necessary to game escape angle of the panicle which is at the distance r>Rl 

from the center of detector. Let & be a set of directions from point r to detector K, r = l,k , 

where k=m, ifr>R~or k= I,if R,_: <r< R,, 1=2, m,assurninfg that R,=r Wholes etasof 

possible particle directions is divided into sub-sets ~i where TUI=A1, ~i=~-.%l. I = 2. k, m~-l=n- 

1.% 
Escape angle for detector RI is selected from uniform distribution, 

1 

l-/q 

and for detectors IL , I = 2, k is proponional to the fimction 

(14) 

Bias obtained is compensated with weights 
For u~-l particle direction is sampled from physical distribution with failure if selected 

direction is within tis~.1 then particle is considered to be absorbed at the escape point. othetwse it 

continues motion with the previous weight Thus, at once (k+ 1 ) panicles instead of one can stan 
horn the escape point, 

Change of statistical weight 

The following procedure is implemented to reduce statistical particle wei-g.h w to a specified 
value of weight fimction W(P) at point P. Depending on relation between value n-/W(P) and 
specified interval of values (nl,n2), nl<l, ti >2, three outcomes are possible 
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a) n>rd Splmng X particles instead of one continue random walk. each with ~veigh~ w =+ >. 

where N=[run2j- 1. Here square brackets mean mte.mal part of number, 

b) n<nl Russnn roulerte particie is ‘-knocked on’” with probabili~ p=l-n and w-ith probabihty 

p=n continues rmuiom walk with weight W’(P). 
c) n 1 <n<fl Particle continues random walk with the pfe~tious weight w 

Intend (n 1.n2 ) specifies range of’ admissible oscillations of statistical particle weight in the 
2 1s usually used in calculations ~ticini~ of prescribed value W(T). lntena.1 (0,5, ) 

The above procedure of reducing statistical weight can be applied at the folio~ing phases of 
modeling particle afier obtaining initial parameters of source particle, prior to particle coliision. 
after selecnon of ~~e of particie interaction with matter, after sampling of scattering W:e@t 
fimction can be defied in the form multiply of some functions. 

Scheme of initial problem calculation 

The foliowing phases can be defined in solving initial problem born statement to solution. 
1. Analysis of problem conditions. L;nderstanding of peculiarities. Problem reduction to 

elementary ones in compliance with the peculiarities. 
2. For each elementzq problem impomnce Iimction is derived and importance biasing scheme is 

selected. According to impommce fimction obtained, parameters of nonanalog distributions are 
calculated. 

3. Problem is calculated by building trajectories in the real system but at every moment particle 
trajectory is built in compliance with impomnce biasing scheme of elementary problem within 
which the particle is. 

Calculation efficiency 

Assume that in addition to some functional nonana.log calculation gives average number 1, of 
particles cau-tit by detedor for the first time. Let O. be relative statistical error of this result arid t. 
be total calculation time. Then efficiency of this calculation is estimated using the known formula 

kn=$ (15) 
En 

For the case of analog modeling, 1A and cr~ are calculated using the following formulas: 

if IA <<l 

1 
C7A== 

*m 

Assuming 1~=1. and ~*–~n, we obtain 

KA =:, 

(16) 

(17) 

(18) 
‘1 
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where tl is mean time required to calculate one history during analog mode’img L:sing formuias 
(15) and (18) we obtain expression to eslimate prize of nonanaiog calculation m comparison w-ith 
that of analog 

(19) 

Examples of calculations 

Examples are given below of several model problems calculated using the above approach 
Problem 1. Consider i.nhite homogeneous medium with two types of interaction. scattering at 
probability q=O.9 and absorption, WI macroscopic interaction cross-section being 1=1 It is 
required to estimate flux of particles Q(R) at the different distances R (up to 100 optical 
thicknesses) from a point isotropic source This problem falls into the class of element~ 
problems of radiation transport in optically thick media. Calculation method is exponential 
transformation. 

Table 1 contains precise (up to 5 digits) values of flux Q(R) [3], calculated values of flux , 

@(R) calculated values of fist collisions J1(R) and values of prize KB(19) at distances R= IO, 20, 

. . . 100. Hereinafter relative statistical percentage error is given in brackets 

~ cm 10 20 30 40 50 

Q(R) *41TRJ 1.3182 e-l 1 .3773 e-3 1 .0794 e-5 7.5201 e-8 4.9116e-10 

6(R) *4zRZ 1.312 e-l 1.3774 e-3 1.086e-5 7.59e-8 -1.91e-10 

(0.47) (0.56) (0.67) (0.80) (0.90) 

J,(R) 3,93e-2 3.97e-4 3 .09e-6 2.135 e-8 1.385e-10 

(o 40) (0.50) (0.60) (o 72) (0.83) 

A-, 0.95 4,0el 2.7e3 2,3e5 2.2e7 

~ cm 60 70 80 90 100 

O(R) ● 4zRJ 3.0796e-12 1.8773e-14 1.1210e-16 6.5894e-19 3.8256e-21 
, , 1 

~~) *47KRZ 3.06e-12 l,88e-14 l,12e-16 
i 

6.57e-19 I 3 88e-21 

(11) (1.3) (1.5) (1.9) (23) 

J,(R) 8.63e-13 5.26e-15 3.13e-17 l,85e-19 1 09e-21 

(1.0) (1.2) (1 4) (1.7) (2.0) 

h-p 2.le9 2.2ell 2 4e13 2.5e15 2 5e17 
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Problem 2. This problem difiers from problem 1 because it takes into account spectral content of 
radiauon Point isotroDlc source of E,-=30CI Kel” gamma-auanta is located in the center of mfmne 
homogeneous zmc medium [Zinc ciensi~; K derived from ~(EcI)=l and is equal to 8 V 193gcm; I 
Source energ is determined from condi~ion qtE 1=0 9 This probiem falls into the ciass of 
eiementan problems of radiat]on transpon in optically thick media Caiculauon method IS 
exponential transformation 

Ca.iculation results for R=50 are given in table 2 

Table 2 
~ cm 50 

6(R) *4xR~ 2.00e-19 

(1.1) 

J,(R) 1.25e-19 

(1.05) 

K, 2,6e16 

Problem 3. Consider infinite medium with the same optical propeflies as problem 1, It is required 
to estimate number of particles J hitting spherical detector with radius t=O. 1 cnz located at the 
distance of R=50cm from the source. This problem includes two elementary problems which turn 
one into another panicles transpofi in optically thick medium (calculation method is exponential 
transformation) and detection problem in scattering medium (calculation method is method of 
concentric detectors). 

Calculations gave the following value: J=5 .09e-l 6 at statistical error m===. 5?0. Tranfotming to 
flux Q(R), we obtain @(50)=l .62e- 14, that practically coincides with result obtained for the 

previous problem where 0(50)=1 .6e- 14. .According of formula ( 19) we have KP = 1.5e11. 

156 



Problem 4. Ilk problem illustrates application of the method of forced collisions to estima~e 

elexxon yield obtained tlom piane aluminium iayer O. 5cm depth exposed to plane-parallel flux of 
1 Me\- yn.rrm-quanta Two calculations were done analog and nona.nakog km times were the 
same Tables 3 and 4 show calculated fluxes of electrons ai the lefi and n-ght bounaties of the 

layer. 

Table 3 Flux of electrons J] at the left boundm of the laver 

I Anaiog I Method of forced 

! modeling I collision 

J] 2.58e-4 2.56e-4 

0, ?’0 16.8 5,23 

Table 4. Flux of electrons J? at the right bounds.w of the laver 

Arldos Method of forced 

modeling collision 

J2 4,88e-3 5.03e-3 

u. ?’0 3.77 1.17 

Tables show that nonanalog calculation gives a prize of KB=l O if compared with analog one 
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lRREGUIAR FREE-LAGRANGIAN “MEDUSA” TECHNIQUE. 

S. G. Volkov, B, M. Zhogov, V. D. Malshakov, l. D. Sofronov 

Arsamas-16, VNIIEF, Russia 
Annotation. 

“Medusa” technique refers to two-dimensional free-Lagrangian numerical methods solving qas- 
dynamics MpIMOflS, The technique uses an irregular spatial grid reflecting the current neighborhood of 
computational points while solving difference equations. 

The paper presents the scheme of difference gas-dynamics equations and the sequence of their 
solution. It describes mam techmque peculiarities such as the use of local inte~olations and mixed cells. 
The paper gives a brief solution of heat conductivity equation on the grids the technique uses 

Finally, the paper discusses the issues on calculation parallelization and gives a computation 
illustration by means of the gwen techruque. 

Introduction. 

‘Medusa” technique has been developed and improved by a large team of investigators for a 
number of years. The early pubhcatlons on “Medusa” technique date back to 1972. Refs./l.2 describe 
the techmque and its first program implementation. Ref./3/ includes an English version of the techruque 
aescnptlon. There are several papers devoted to the computations using this techmque /4,5/. 

aMedusa” technique is applied to compute gas-dynamic flows assummg shock waves and 
tangential gaps that are complex both in their geometry and in the nature of motion. One is sure to 
confront certain difficulties when computing the flows of the kind by regular techniques. 

“Medusa” technique automatically makes the grid adaptable to the solution in the sense that 
when computmg the unknowns at each point it uses the information on solutlon value at the neighboring 
for the gwen moment points. As a result, a set of neighboring points might vary during the solution with 
computations run on metrically close netghbors. 

1. Problem discretization. 

“Medusa” technique is used to solve 2D (plane or axially symmetric) gas dynam[cs equations In 
Lagranglan variables: 

ffi’ 
— = -k&7d(P+Q)+ I’F. 
dt 

J 
— = Const. 
l“ 

:+( P+ Q)!$=O, 

JE=E(P, V). 

Here U - velocity vector, V - specific volume, P- pressure, F- external force vector. E - 
specific internal energy. Q value - computational viscosity. The second equation of the system is the 
equation of conservation for Lagranglan particle mass, J value in this equation is the transformation 
Jacobian from the initial Eulerian particle coordinates to the current ones with regard to problem 
symmetry. The given equation system is solved in some connected 2D domain whose boundary is 
assigned bounda~ conditions of geometric (rigid wall) or dynamic (ass]gned pressure or velocity) type. 
Within the domain the initial values are given. 
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To dfscretize the Droblem within tne aomaln and on its boumlary some Dolnls are sele Cle C ~n: 
Dolnt iOCaIIOn IS amilrary Tne boundary polms snoula not be precisely on tne Dounda~. ii IS Sufflclen! 
tnat they Snould be CIOSer to the corresponding Doumlary secuon tnan non-Dounaary points. To seiecl tne 
tntegratlon Danem a set of neighboring oo!nts IS aefined for each point, A se! of Damts closest 10 tne 
conslaerecl one than to any otner wlthln a selecle5 set of points IS considered lo be point neighbors 
Aadmonal fictitious neqhbors are defined Tor Dounaa~ points, namely” left and right bounaaw candltlons 
are adaed as nelgtmonng. A set of neigh Dor3 for eacn point are put [n oraer In a taunter-clocwlst? 
direction. 

A cell - as an area of influence - IS constructed for each point by means af nelghbars. It IS & 
polygon whose vertexes are comprised Dy triangle centers of gravity defined by the point and two 
consecutwe ne!ghbors. Ifl case with ane fictitious neighbor the vertex IS the middle of the sector 
connecting the point with non-fictitious neighbor projected to the carrespandlng boundary. in case with 
two fictitious ne[ghbors the point itself is pro~ected. The probiem IS dlscretlzed by applying the ecruatlon 
of motion to cells. 

The gradient of (P=Q) value is found by means of contcwr integral as to the cell perimeter. 
Centaur integrals are calculated by Imear intecpolat[an of P and Q functtons on triangles, The values 
on domam boundanes are taken from boundaw condihons. As a result we obtain: 

Where Ps, is (P+Q) on the side connecting the i and i+l vettexes. This function for boundary 
sides IS taken from corresponding bounda~ condition, 

We would obtain the following fomnulas far velacity components at the next computational step: 

L ‘“+’ =U”+Vn. (F=+ Gx)-dr, 
,;,”+, 

= w“ +V” -F, -fir. 

The equation for conservation of mass is discretized directly. An average specific cell volume 
results from the cell voiume divided into mass. Thus we obtain: 

J’”+’ = v“+; I’lfn’’,.’w””i = hf”. 

in plane case the cell volume equals to domain, in axisymmetnc case it equals to the volume of 
cell ratatton around the X axis to one radian. 

The equation for energy is discretized as follows: 

E“+’ = E“ +(o.5. Pn+’ +0.5. P” +Q”+i ).(J7” _J~”+’ )0 

Computational viscosity for compressible cells is defined by the formula: 

With ~1 >V n viscosity sets to zero. 

I - the cell size directed to pressure gradient, k - an empirical coefficient, presently equal to 1.6, It 
represents a quadratic viscosity proportional to the squared number of velocity divergence with the first 
order of accuracy. 
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Tne next step IS calculated as follows. The specific cell volume IS comDutea at t~e begmnlng c- 
the next step. Computational vIscosIIy is found Dy vanatlon value of specif[c volume Tnen tne amaDaLc 
eauation computes the energy, pressure, and Souna VelOCIIy m tne cell. The allowable time SteD for tne 
given oomt IS calculated by dwldmg tne Charactenstlc cell size by sound veloclty. A characten!mc SIZS 
results from the cell ctomam dwlaed by its penmeler. 

The second step commtes the pressure (+vlscosity) gradients. the sizes of cells m graa!er: 
direction ana new velocities. With rigid walls restnctmg the domain, the veloc!tles of Comesoonamg 
bounda~ points are ad)usted so that the points would keep within the walls during the computation srep 

Local grid variations when some points either shift or change their neighbom are tamed out after 
the second step. Along with this, tne grid functions are vaned as well. 

At the final computation step the pONItS squire new coordinates according to the formulas” 

x“”i = x“ +[’”+’dr, 

These actions completed, everything is ready for the next step. 

“Medusa” with irregular grid is specifically featured by the opportunity of local grid vanatlons. The 
mam variations of the kmd are extensions and reconstmctions. 

The extension deals with the scheme aligning and the cell construction technique. Some of the 
points may fall out of the cell. To remedy the situation, the points that got close to the boundary of their 
cell different from the problem boundary or those having left the cell are shifted to the center of cell 
grawty to a certain part of the segment connecting the poml with this center. 

ReconstructIons remedy the pattern of point neighborhood. The techmque supports the point 
propeny to have only closest ones as its ne[ghbors. The neighborhood is vaned at local level 

Some pans of the cells enter others both during extension and reconstmction processes. When 
values are recalculated these parts carry mass. total energy and pulses along the axis. A pari of the 
value to be carried is propoflional to the volume part being carried in comparison to the total cell volume. 
Interpolations result in kinetic energy transfer to internal. 

“Medusa” technique uses a mixed cell model when computing interfaces. A point is supposed to 
contain one material or several having their own equations of state. Points with one material are refereed 
to as pure. those with several - mixed. A mixed cell model is supposed to have several separated 
materials. The material volumes of one cell summed up equals to a total cell volume. The equations of 
energy for each material are integrated into a system and additional conditions are assigned. One of 
them requires the equality of the cell volume and the summed volume of component materials. The 
gwen model fits well the cases with perturbation propagation perpendicular to materiai interfaces, Cases 
when movement along interfaces prevails requ!re the selection of computational grid. 

2. Heat conduction implementation. 

Implementation of heat conduction as of other additional physical processes IS based on splifflng 
the problem as to physical processes. The point parametem Imply additional grid funchons, e.g. 
temperature. and the corresponding equat]on is computed on a statlonaty grid for the same cells as 
used in gas dynamics. Dicretizatlon in time uses the same computational step as m gas dynam!c 
computations. 

When solving the equation for heat conduction 

(% 
- -div(h@dT), —. 

a 

where K is thermal conductivity dependent on the soluhon, the Implicit difference scheme was used 
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r “- r: 

— ~~ 

~ ~: (T-” – ~“- ) 

di =-’” 
wnere T temperature at the main point, T - temperatures a! the DoInts ne[ghbonng to tnat being 
calculated R - number of neighbors, A factors are computed Dy some averaging tne neat conauctlo~l 
factors K Doth m tne point unaer comDutatlon and Its neighbors. 

Tne ,Mpl[clt equation obtained 15 solved by local balance iterations. The metiloa applleS hea: 

flows resulted from local neratlons of the points having been computed. 

3. Paralleiization features. 

“Medusa” technique provides great opportunities for gas dynamic equations to be 
computed parallel on a large number of processors. Some computation Step Sta9e IS defined by the 
neighboring points data resulted from the prewous stage or from the last stage of the previous 
computation step. Thus, both shared-memary and distributed memory schemes suit “Medusa” equally 
well. 

Parallelization scheme is as follows, Each stage of computation step !s computed by 
processors separately, splitting a set of all points mto subsets. These subsets are computed by their 
processors. To balance the load a number of points is assigned to a processor or the splitting mto 
subsets takes place followed by automatic balancing. When the memory is sufficient to store the 
previous stage results one processor is capable of computing several stages synchronically. This brings 
up the question of duplicating several computations. In case of distributed memory the issue of data 
transfer becomes critical. Each processor needs the data on its points as well as on the neighboring 
ones. In a shared-memory case the subset configuration is of no importance whereas in distributed 
memory the subset form deterrmnes the transferred data volume. 

4. Computation illustration. 

Computation results represented graphically illustrate the most specific features of the technique. 
The problem solution for the case with automatic channel pinch is demonstrated. 

The problem geomety is as follows. A sealed chamber contains gas under a high pressure, The 
gas may leak out through a narrow channel in the wall constraining the gas. We need to define whether 
the channel can be shut or not depending on properties of the material the channel walls are made of. 
Mathematically the problem is formulated as follows: one halfspace in initial state is filled with ideal gas 
whose pressure is PI, density is PI and adiabatic exponent is yl: the second halfspace is filled with ideal 
gas having P2=0 pressure, p2 density and adiabatic exponent ‘{2. There is a cyhnder channel in the 
second halfspace with rO radius, free of material, and having an axis perpendicular to the plane dividing 
the halfspaces. What we need to require is the system behavior in time. 

Flg.1 shows the initial problem geomet~ and the difference grid to be used for computations. 
Flg.2 illustrates the material disposition near the channel at the moment of its pinching. 
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INTRODUCTION 

The technique “Meduza” was developed and improved by a large team 
of investigators during many years. An incomplete list of the technique 
investigators can be drawn up basing on the lists of authors of papers devoted to 

description of the technique and computations conducted with this technique 

The early publications devoted to the technique “Meduza” go back to 1972. 
Refs. /1,2/ describe the technique and its first program implementation. Ref. /3/ 
includes the English version of the technique description. There are several 
papers devoted to the computations conducted using this technique /4, 5/. The 
list of the presentation authors includes its original developers. They pursue the 
current technique development and maintenance. 

It is impossible to realize reliable gas-d-ynamical computations of 
complex products by some one numerical technique due to gas-dynamical flow 
features. computational algorithms, limited capabilities of computers and many 
other reasons. It is a common practice to conduct computations with different 
techniques in order to see the effect of methodic emors by result comparison. Of 
course. in each computation it would be desirable to refine the mesh so that the 
results in no way depend on that taken at the initial time. However, as a rule. 
this is impossible, and one has to take it for granted that the quality of the 
obtained results depends on the mesh cell size. Therefore. in the division there 
are several techniques for solving gas-dynamical problems. “Meduza” is one of 
the Lagratgian techniques. In the technique “Meduza” the -grid is automatically 
adapted to the solution in the sense that the computation of unk.nowms at each 
point uses the data of the solution value at the points which are neighboring at 
that time. The latter circumstance leads to the fact that during the solution the 
set of neighboring points can charge, with the computations being conducted 
each time by metrically close neighbors. The technique refers to free- 
Lagrangian. 

The experience of many years of the technique empiojment showed that 
the technique can be used to solve very complex 2D gas-d>mamical problems. 
A a reasonable construction of the initial grid the qualitative pattern of flows 
has always been proper. To enhance the accuracy achieved, one usual]! 
increases the number of the points either over the whole problem or at its 
regions where the flow uadient has proved especially high and a noticeable loss 
of accuracy has taken place. 
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7. Problem dkcretization 

The technique “Meciuza” is used to solve 2D (plane or axis>mrnetnc) 
gas dynamics equations in La.gangian variables. 

d [’ 
– –Vgrad(P+Q)+VF, 

dt 

J 
—= consf, 
v 

dE d V 
~+(P+Q)T=o, 

E= E(P, V). 

Here U - velocity vector, V - specific volume, P - pressure, F - external 
force vector. E - specific internal enereg. The value Q. computational viscosity, 
is some fictitious value relating to the problem discretization and depending on 
the grid sizes. The second equation of the systen the equation of consetwation 
of Lagrargian particle mass, the value J in this equatiom is the Jacobian of the 
transformation from the initial Eulerian particle coordinates to the current taking 
into account the problem symmetry. The above equation system is solved in 
some comected 2D region on whose boundary geometric type (rigid wail) or 
dynamic (given pressure or velocity) type boundary conditions are given. inside 
the region the initial values are given. 

To discretize the problem inside the region and on its boundag some 
points are taken. The poim position is arbitraty. It is only necessary that they 
map a given problem in some way, for example, where the density is higher, the 
points should be more condensed. The boundaty points should not necessarily 
be precisely on the bounda~, it is sufficient that they were closer to the 
corresponding segment of the boundaty than the non-boundary points. 

The region triargalation is made using a set of points taken. Ay 
tnargulation type is possible in principle. The technique essentially employs the 
ttiargulation related to the Dirichiet (or Voronoi) cells. The Ditichlet cell for a 
point is the set of all region points which are closer to the point of concern than 
to any other one tlom the point set taken. In the general case the Dirichlet cell 
will be a convex polygon produced from intersection of sernipianes determined 
by perpendiculars to the straight line se=ments connecting various points of the 
set taken and passing through the middles of these segments. The points are 
declared neighboring if their Dirichlet cells have a common side. Connection of 
all the neighbors with straight line segments results in region frabgnentation into 
polygons. Having passed diagonals in the obtained polygons we obtain the 
region triangulation. When no four points lie on a single circumference, the 
Dirichiet cells determine the triangulation without passing diagonals. 

The tnargulation is used to determine a set of neighboring points for 
each point. Two points are neighbors if they comprise one triangle. For 
boundary points fhrther fictitious neighbors are determined, namely: on the let? 
and on the right bounda~ conditions are added as neighbors. The set of 
neighbors for each point is ordered in the counter-clockwise bypassing 
direction. 

For each point the neighbors are used to construct a cell. the influence 
re~ion. This is a polv~on whose vertices are the centers of gravity of the .= 
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triangles determined b~ the point and two successh’e nei~fibors Wiien one 
neighbor is fictiuous. the vertex is the projection of tne rniddie of the strai-ght 
iine se=ment connecting the pomr to the non-fictitious neighbor onto the 
corresponding bounda~. In the evem of two fictitious neighbors the point itself 
is projected The problem dlscretization is found by appiying the equations of 
motion toward the cells. 

The gradient of the value (PTQ) is found 
mean and Green formula to the contour integrals: 

~fd~ =JJp,* 

by appl-ying the theorem of 

The fi.mction (P+Q) is taken for the function f. The pmial derivative 
values are substituted with the cell-mean value equal to the quotient of division 
of the integral over area by the cell area. The inte-grals over area of the 
derivatives are substituted with the contour integrals of the fimctions 
themselves. The contour integrals are computed by linear interpolation of the 
fimctions P and Q on triangles, On the region boundaries the values are taken 
from the boundary conditions. Finally we obtain 

where P,, is (P+Q) on the side connecting the vertices i and i+l. For the 
boundary sides this finction is taken from the relevant boundaV condition. At 
every nexl computational step for the velocity components we find the formulas 

1 ,.+! =L~n +v” .(FX +G=). dt, 

w n+! 
=w”+v”. F,. df. 

The equation of consewation of mass is discretized directly. The mean 
specific cell volume is found by the cell volume di~ision by mass which is 
computed by the initial density and varies only at the interpolations. Thus. we 
obtain 

v“+’ = 1’”+’ /lw+’, n4n+’ = M“. 
In the planar case the cell volume equals the area. in the axisvmrnetric 

case it equals the volume of the cell revolution about the axis X bv one radian. 
The equation of ener~g is discretized as follows: “ 

En+’ = En +(0.5-P”+’ +0.5. Pn +Q”+i). (V” –V””). 

This equation and the equation of state are used to determine pressure 
and ener-~ with the method of iterations 
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The computational viscoslv for compressing cells is found by the 
formula 

Q=(A., J’”+’ _J’” ~,n.vn )’ f~’”. 

At ~’n+: > V“ viscosity vanishes. In t“h.is formula 1 is the cell size in the 
pressure gradient directiom k is an empirical factor currently equal to 1.6. This 
is quadratic viscosi~ proportional to squared velocity divergence of the first 
order of accuracy. 

For every next step the computations are amtged as follows. When at 
the previous step the new point coordinates have been computed. at the 
beginning of the next step the specific cell volume is computed. The 
computational viscosity is computed by the value of variation in the specific 
volume. Then the adiabat equation is used to compute ener~, pressure. and 
sound speed in the cell. The permissible time step for a given point is computed 
through division of the characteristic cell size by sound speed. For the 
characteristic size the quotient from division of the cell area by the cell 
perimeter is taken. The above computations are conducted for all the points and 
constitute the computation contents of the first stage of the computational step. 

At the second stage the pressure (wiscosity) gradients. cell sizes in the 
-gradient direction and new velocities are computed. Given rigid walls bounding 
the region the velocities of relevant bounda~ points are modified so that the 
points do not go beyond the walls during the computational step. 

Following the second stage. local modifications to the -grid are made at 
which some points charge their neighbors or are shifted. in so doing the ~grid 
fimctions charge as well. 

At the final step computation stage the points acquire new coordinates 
by the formulas 

x R+: = x“ + L’n+’dt, 
,“+: 

J = J’” + W“+’df. 

Then everything is ready for conduct of the next step. 
The main “Meduza” feature relating to the irre-gular ~grid is the capability 

to make local grid charges. The basic types of such charges are extensions and 
reconstructions. 

The extension relates to the scheme centering and cell constmction 
method. In the scheme discussed the points do not “notice” the approach of 
their neighbors It is best to show the position using a one-dimensional model 
example. Consider a set of points on a straigh[ iine segment uniformly 
distributed at the initiai time. The points of odd numbers do not move. while the 
points of even numbers have one and the same velocity Pressure is identical at 
all the points Upon execution of a computational step like in “Meduza” the 
points away from the boundary will dispiace from the ceil centers. but celi 
voiumes (iengths) will not change and, hence. the gas-dynamicai parameters wili 
not charge as well. in the general case the cell drops behind the point or the 
point tries to go outside the cell. To remedy the situation. the points which 
came ciose to the boundary of their cell other than the probiem boundaries are 
shified to~vard the center of gravity of the ceii at some fraction of the length of 
the straight iine segment connecting the point to that center 
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The reconstmctions remedy the point nei-ghborhood pattern The 
technique maintains the property of the points to have only the points as their 
neighbors wiich are nei-ghbors in terms of the Dinchiet cells. The check for the 
Dirichiet cell criterion is made at the local level. i.e. for one neighborhood 
generation. Consider some point and its three successive nei:~bors. 

/ A3 

AO 

Al 

Point M will not be a neighbor of point AO if the point of intersection of 
the perpendiculars to the middles of the segments AO-A1 and AO-A3 and point 
AO lie in one of the serrtiplanes determined by the perpendicular to the middle of 
the se=ment AO-.W. The critical case is when all the three perpendiculars 
intersect at one point, i.e. the above four points lie on one circumference. Point 
N is brought out of the neighborhood if it has traveled quite far beyond the 
circumference passing through points AO. A 1, A3 (> 10?6 of radius). W%en 
point A2 goes out of the number of the neighbors of point AO. its two other 
neighbors, Al and A3, become neighbors of each other. 

Both at ex~ensions and reconstructions some parts of cells transfer to 
other cells, At updating mass, total energy (internal + kinetic). and momenta 
along the a,xes are transfemed together with these parts. The transfemed fraction 
is propoflional to the transfe~ed volume fraction as compared to the total cell 
volume. On transference of all the parts involved in the cument re-interpolation 
the velocities are obtained by division of momenta by masses. Internal ener=~ is 
obtained by subtraction of the newiy obtained kinetic energ from totai ener-~ 
In any case the re-interpolations result in conversion of the kinetic energy to the 
intemai, similar to a number of absolutely inelastic impacts of the transferred 
parts to the remaining. 

When computing interfaces. the technique “Meduza” uses the model of 
mixed cells, lt is assumed that a point can contain one or more materiais which 
have their equations of state. One-materiai points are referred to as pure and 
severai-material points as mixed At the initiai time the mixed points are 
obtained at material interfaces. Later on due to the re-interpolations the mixed 
points can become pure. whiie the pure mixed. At material transfer ffom one 
point to another the percent composition of the recipient point is maintained A 
pure point becomes mixed when transfer of material not contained in it is 
forced. 

The mixed celi modei provides for severai segregated matenais. The sum 
of material volumes of one cell equals the totai cell volume. The equations of 
energy for each material are integrated into a system and additional conditions 
are imposed. One of these conditions expresses equaiit! of the celi voiume to 
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the sum of comDosing maKenal voiumes other conciitlons relate pressures and 
energies of various materiais. For example, in pure gas a:mamics tne condition 

of equal pressures is used. A computation with heat conduction may use the 

condiuon of equal temperatures if aensim differences between cell materials are 

not ve~ iarge The above model works well a? perturiiation alstribution 
pet-pendiculariy to the material interfaces N, a predormnanl motion along 

interfaces the computational -@d should be fit. 
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q Technique progratn implementations -. 

The technique pro-ream implementations introauce some peculiarities 

relating to computer capabilities. For example, memo~ economy can result in 
asymmet~ caused by the fact that at some points either values from difierent 
time templates or interpolated and non-interpolated values are used. Small main 
memo~ sizes require using the external memo~ and appropriate computation 
tactics. 

Three main technique implementations can be disti.rgguished: on BESNI-6 
computer, on ES series machines. and on personal computers. 

The principal feature of the BESM implementation is a small main 
memory at quite a high performance. The probiem computation employed 
splitting a set of computational points into so-called computational compacts. 
The number of points of one compact corresponded to the standard unit 
communication with the external memory. The point computation till the end of 
the computational step was conducted compact-by-compact. For points of other 
compacts only the computations were conducted which are required for 
computation of the main compact. 

The step computation for the compact was split into stages 
approximately as it was stated in the previous section. Upon the computation of 
the compact it turned out that its points were not needed for the step 
computation of other compacts and it could be transferred. if necessary, to the 
external memo~. The compact computation required presence only of the 
compact itself and several neighboring compacts in the main memory. In this 
manner it was possible to increase the volume of the points considerably in the 
problems computed. The limitations were even in the digit quantity of the points 
used for numbers. The digits were as follows: the main memoty allowed to 
allocate about 1600 points, the splitting into compacts could be used to be able 
to compute problems w-ith 16000 points. 

In addition, one may mention a dense packing of point data and using 
various programs for initial template computation. gas dynamics computation 
and computed data output. Neighbor lists were used for the point neighborhood 
description and each element of the list was composed of a group of neighbors 
which could be fit into one machine word. The pro&gram was implemented in the 
machine codes. 

The ES implementation did not use the splitting into compacts. Short 
integers were used for numbering points and edges. As a result, the mmcimurn 
permissible number of points equaled 10000. The characteristic features of the 
ES implementation were as follows: location of all points in main memory. using 
the dynamic memory for amays and tabies, point neighborhood description using 
the edge scheme. 

The edge scheme provides for the point neighborhood storage as a 
graph. Each graph edge is described with two points in an arbitrary order and 
with two neighboring edges foliowing the described one in the order of counter- 
clockwise bypassing for each of the points composing the edge The order of 
appearance of the neighboring edges is consistent with the order of point 
appearance. 
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U 

This scheme 
neighbor lists. bu~ is 
implementations. 

requires approximately two times more memoty than the 
of a re-aiar character which is more suitable for lan-guage 

The ES program was implemented in the PL 1 larguage. The initial data 
computation gas dynamics computation and data output were located in one 
load module. The computation was controlled with the task text interpretation 
program. 

The technique “Nleduza” was implemented on personal computers with 

i486 and higher processors. The whole computational part was implemented on 
the FORTWN pre-processor SVKFT. This pre-processor generated the text for 
the Fortran-77 compiler translated by many available compilers. Basing on test 
problem computation a compiler was taken which generates a fastest code. 
Watcom 9.5. This pro-gram version uses the computation control lan-sage 
allo~ving the on-line interaction with the user. At any instant of the computation 
it is possible to stop the computation. look through the results. make file 
outputs. make some modifications and continue the computation or abom the 
task. 
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3. Implementation of heat conduction and detonm”on processes 

The implementation of fhrtner physical processes, such as heat 
conduction or kinetics. is based on splitting the problem by physical processes. 
Additional grid t%nctions, for example. temperature or HE concentration are 
introduced to the point descnptiom and the relevant equation is solved on an 
immovable grid for the same cells which are used for gas dynamics. The time 
discretization employs the same computational step as at the gas dymarnics 
computation. 

When solving the equation of heat conduction 
E 
— = -div(KgradT), 
a 

where K is the heat conduction factor, generally speaking. depending on the 
solution. the implicit difference scheme 

E ‘-’ -E: “ 
= fA,, (~”’ - ~“’) . 

dt ,=1 

was used where T, is temperature at the main point, T, are temperatures at the 
points neighboring with that being computed, R is the number of neighbors. The 
factors & are computed using some averaging of the heat conductivity factors 
K at the point being computed and its neighbors. 

The obtained implicit equation is solved with the method of local 
balance iterations. This method is well parallelizable. 

When solving gas-dynamical problems with detonation simulation, 
various models were used. The prompt detonation was simulated using 
replacement of the equation of state and addition of ener~ reiease. The 
assumptions of constant detonation rate and specific ener-g reiease were used. 
Another method of the detonation simulation is taking into account chemicai 
reactions. various dependencies of the reaction rate on thetmodvnamic 

parameters of ceii matenais were used here 
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4. Paralielization -features. 

The gas ci>narnics equation solution with the technique “Nleauza” 

pro~-ides wide capabilities for computation parallelization on a large number of 

processors. lt should be noted that the computation of a separate computational 

step stage stated in the first section for each point does not depend on 
computation of the same stage for other points. The computation of any 
computational step stage depends on the data for nei-dbonng points computed 
at the previous stage or at the last stage of the previous computational step. 
Thus. both shared-memory schemes and distributed-memory schemes are 
suitable for “Meauza”. 

On the shared memory the parallelization scheme is as follows. The 
computation of each computational step stage is distributed among the 
processors with spiittirg the set of all the points into subsets. These subsets are 
computed by their processors. For the ioad baiancing the number of the points 
on the processors is determined or splitting to small subsets is made and seif- 
baiancitg is used. W-nen the memory is sufficient to store the results of the 
previous stages. several stages may be computed on one processor tili 
synchronization. In this case the question about duplication of some 
computations arises. 

For the distributed memo~ principai becomes the problem of data 
transfer. The paralieiization scheme remains approximately the same as for the 
shared memo~. The set of the computational points is split into subsets which 
are computed on separate processors. Besides its own points. each processor 
has to have the neighboring point data as weii for the computations. The 
number of the neighborhood generations depends on the number of the 
computational step stages computed on one processor tiii synchronization. k a 
result, it turns out that if the data transfers occur rarely. the amount of the 
transfe~ed data is iar:er. While the subset cordlguration does not play a large 

role for the shared memo~. the subset type is responsible for the amount of the 
transfemed data for the distributed memoV. The probiem of the best method of 
point distribution over subsets has not yet been solved thus far. It is e~ident 
intuiti~’ely that the subsets should be related to a shortest bounda~. something 
iike a circie on the point neighborhood graph. 
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CONCLUSION 
The technique “Meduza’” may be used for computation of fiows 

vet-v complex both regarding geomet~ and pattern in particular. allowing 
for- flows with shock waves, tangential discontinuities. For illustration 
graphic results are given for some computations w’hich show most 
characteristic features of the solutions computed. 

The first computation demonstrates the solution of the channel 
self-pinch probiem. Setting up the problem is as foliows. in a closed 
chamber there is gas under I@h pressure. This gas can flow out throu-gh a 
narrow channel in the wall bounding the gas. It is necessary to assess the 
possibility or impossibility of shutting off the channel depending on the 
properties of the material the channel walls are made of The mathematical 
problem is formulated as follows: at the initial state one semispace is filled 
with ideal gas of pressure P 1, density P1, adiabatic exponent YI; the 
second semispace is filled with ideal gas of pressure P2=0, density p2. 

~ in the second sernispace there is a cylindrical adiabatic exponent y- 
channel of radius ro not occupied with material whose axis is 
perpendicular to the plane separating the serrtispaces. It is necessa~ to 
determine the time behavior of the system. 

Fig. 1 shows the initial geometty of the problem and difference g-id 
used for the computation. The wall is depicted red. Its initial density is 
2.56. Gas 34 in pressure and 0,06 in density at the initial time in shown 
green. The adiabatic exponent of both the materials equals 3. The channel 
and receiver behind the wall are composed of light gas shown in blue 
0.001 in density. Colors other than those of the main materials depict the 
mixed cells. The horizontal size of the system equals 200, the vertical 100 
The channel radius is 4.5. 

Fig.2 shows position of the materials near the channel by the time of 
beginning of its shutting-off. Fig.3 presents the velocity field at the same place 
The arrow length is proportional to the veloci~ modulus. The mixed cells are 

drawn completely. The charnel is not shut off as there is a positive component 
along the axis X over the whole chame! length. Fig.4 shows the density 
distribution. The red and brown points have the highest densi~ (5-7), the white 
and gray the lowest. 

Figs.5, 6.7 show similar patterns by the time of completely shutting-off 
of the channel. In Fig5 one can see cells of the wall material on the axis. Fig.6 
shows some points before the channel which have reversed In ttis figure the 
maximum velocity is twice as low as in Fig.3. In Fig.7 the region of the highest 
density points reaches the axis. In Fig.8 there is the complete flow pattern at the 
same time. 

In this computation one can note a characteristic specific positioning of 
the points near most interesting places and considerable displacements of one 
point relative another. Depending on the value Y2 characterizing the wall 
material compressibility the channel can be shut off as is seen from the presented 
figures or remain open. 

The next problem is opposite to the first in a sense Penetration of a 
narrow cylinder through a plate of another material is computed in the gas- 
dynamical approximation. i.e. without taking into account material strength. 
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The initial geomet~ is shomm in Fig.9. Fragments of two computations 
are given here. in the first the plate density was 7.85 and the penetrator densiu 
was 271. In the second computation the materials exchanged their places. The 
veloci~ of the peneuator approach equais 5 “in both the computations. 

Fig. 10 shows the plate and penetrator shapes some time after beginning 

of the impact for the first computation. The next fi-wre shows the veloci~ field 
at the same time. 

Figs. 12 and 13 show the coliision problem where the penetrator densi~ 
is I@her than the piate densi~. Here the instant is shown when the penetrator 
has almost flown throu-gh the plate. Fig. 14 shows the density distribution by the 
same time. 

The next example shows the heat conduction computation with the 
technique “Meduza”. The task consists in computation of the temperature field 
forming at cooling of an irdhite square cross section bar inside which at the 
initial time t== temperature T(O,X y)= 1 is givem while on the outer boundary 
during all following times zero temperature Trp(t)=O at t >0. is maintained. 
The bar cross section is a unity square: Os x < 1; 0< y <1. 

2 computations are presented, In the first computation the grid was 
taken uniform 40 by 40. Fig. 15 presents the graph of the -grid and temperature 
field at time t=O. 1. 

In Fig. 16 the arrows indicate the heat gradient direction to a scale. the 
arrow length being proportional to temperature at the point where the maximum 
arrow length corresponds to the matimum temperature whose value is given in 
the upper row in the graph. 

Fig, 17 presents the graphs of the temperature distribution by sections. 
The right bottom rectangle gives the section along the line: the lefl point is x=O. 
\=0,5: the rigdt point is x=1, PO.5. The lefi bottom rectangle gives the section 
along the line the lefl point is x=O. y=]: the tight point is x=1, YO. The right 
top rectangle gives the section along the line: the Iefi point is x=O, ~0. 1; the 
right point is x=1, j=O. 1, The Iefl top rectangle gives the section along the line: 
the left point is =0.1, y=l; the right point is x=O. 1, y=O. The crosses show the 
anal}lical solution. 

In the next computation the grid was taken uniform by rows and 
columns with point increasing in a line horn the square center from 3 to 40 

points on each side. Fig. 18 presents the graph of the -grid and temperature field 

at the time t=O. 1, 

In Fig. 19 the arrows indicate the heat gradient direction to a scale, the 
arrow length being propofiional to temperature at the point where the maximum 
amow length corresponds to the mmimum temperature whose value is given in 
the upper row in the graph. 

Fig.20 presents the graphs of the temperature distribution by sections. 
The right bottom rectangle gives the section along the line. the iefi point is x=O. 
)=0.5, the right point is ~= 1, y=O.5. The left bottom rectangle gives the section 
along the line. the lefi point is x=O, y= 1; the right point is x=1. }=0. The right 
top rectangle gives the section along the line: the Iefi point is x=O, y=O. 1; the 
right point is x=1, y=O. 1, The Ieft top rectangle gives the section along the line: 
the Iefi point is x-O. 1, y= 1; the right point is x=O. 1, }=0. The crosses show the 
analytical solution. 
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METHOD FOR MATERIAL FAILURE ANl) FRAGMENTATION 

COMPUTATION IN EGAK PROGW SYSTEM 

Gorodnichev A. V., Simonov G. F., Yanilkin Yu.J’. 

RFNC-VNIIEF, Sarov (Arzamas-16) 

The presentation describes the Lagrangian-Eulerian technique implemented 
in the program system EGAK [ 1 ] and designed for simulation of 2D multi- 
component media flows whose characteristic feature is presence of severe 
deformation, taking into consideration elastic-plastic material properties [2]. The 
technique under discussion makes use of the elastic-piastic lk’iikins modei with the 
Mises yieid criterion. . 

The method of concentrations is used to compute the interfaces. In one 
computational ceil there can be severai components characterized with internal 
energies, as weii as voiume and mass concentrations. The components can be both 
various materiais with their equations of state and eiastic-piastic constants and 
vacuum, as weii as a perfectiy rigid body. 

The technique for the material faiiure computation uses both simpiest 
modeis based on prompt faiiure at achievement of limiting tensile stresses and 
more compiex modeis proposed and studied in [3-6]. The iatter invoive the 
evolutionary equations for the parameters characterizing the material porosity 
degree which aiiows to take into account the history of damage accumulation in 
the materiai to determine the time of its failure. 

The material rigid component yieid strength and pressure are assumed 
to be a function of the parameters characterizing the materiai porosity degree. 

The proposed technique aiso implements the capability to take into 
consideration material fragmentation foiiowing material iaiiure under the high- 
veiocity deformation conditions. To do this, the concepts deveioped by Grady [7] 

and Ivanov et al. [8] were considered. 
The purpose of using the dynamic fragmentation modei is determination of 

the fragment sizes from the materiai faiiure. At a high-velocity co!lision the 
fragmentation occurs when the coiiision veiocity is hjgher than some critical 
vaiue. The fragmentation characteristics immediately depend on the faiiure type 
and materiai parameters at the faiiure time. 

The presentation discusses computed data for severai probiems: steei ball 
piercing through a two-layer aluminum and textolit barrier; collision of two copper 

plates; steei bali piercing through a piastic barrier; etc. The iatter probiem was 
used to test the fragmentation computation methods. 

The computed data is compared with the analytical soiutions, with 
experimental data and results of computations \vith other techniques. In aii the 
computation series conducted the agreement of the computed data with analytical 
soiutions and experimental data was good. Note that the mode! of Kanel et al. [4] 
proved most efficient and currentiy this is the basic in the EGAK system. By way 
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oi exarnpie consiae~ tne cor, puted results io: plerclng through 
aiumlnum anti corn~:site barrle: by z stee; ha!! fivlng a: velocity 
Tne initiai computation ~eometr~ is presented i~- FIR. 12, One comr3ulatlor, 
did not use the faiiure moae~, the other used Kanel’s mociel. The equations oi sta[: 
were taken in the Mie-Gruene Isen form. Fig.lb. c shows the piercing pattern 

~oi t~vo times. In the experiment the composite and aiuminum hole diameters are 
60 mm and 70 mm, respectively, close 
taking into account the failure. 

vaiues were found in the computation 

t== 

Al 

textoli? 

Fe 

t=o 

L f’ 8L~ 
.“ 

t=20 

destructed: 
textolit 
Al 

t==o 

l!!~ experimental hole size 
h 

-b 
aperture 

a) b) 

Fig. 1. Raster pattern of two-layer barrier piercing: 
a) computation without account of failure, b) computation with 
account of failure (time in microseconds). 
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Molecular Dynamics Simulation of Permeation in Solids 

PhiIlip I. Pohl. Grant S Heffeifingr. Dia.m K. Fisler md Davki hl. Ford 

Sandia National I.Aioratories. Albuquerque. NM 87185 

Abstract 

In this \vork we simulate perrmation of .ma and catims in soldid models using mokcular 

mechanics and a dual control volume -grand canonical mokwlar dy nmics technique. The molexlar 

sie~ing nature of rnicrop orous zeolites are discussed and compared with that for amorphous silica 

made by sol-gel methods. One mesop orous and one microp orous membrane model are t es~ed wit h 

Lennard-Joms ~gas~ corresp ending to He. H2. Ar and CH4. The mesoporous membrane modd 

clearly foliows a Knudsen diffision mechanism. whik the microp orous model having a hard-sphere 

cut off pore dianxt er of -2 .4.~ demonstrate es molecular sieving of the methane (@3. 8.~ ) but 

anormdous behavior for Ar ( r3 .4A ). Prelirnin~ results of CaT difision in calat e and He!H2 

diffision in polyisobut h ene are also presented. 

INTRODUCTION 

The diffhsion of -gases in porous solids is gove-ned by physical and chemical features of 

both the solid and the -m. The diffusion of a species. i. in a direction. x. is related to the gradient 

of concentration or densi~. p. b>” Fick”s law. 

J: = –D,r $P, (x). (1) 

Permeabili~. F_. a more appropriate parameter used in flow across membranes is found b] 

modi~ing ( 1 ) slightly. i.e.. 

(2) 

Where AP is the pressure drop across a membrane of thickness x, per cross sectional area A. If ,s 

is not knowm exactly. then it is absorbed into F and takes the name permeance. 

RecentIy. Xiao and Wei gave a detailed analysis of the diffusion mechanisms of hydrocarbons in 

zeolites [1]. Their unified diffusion theo~ describing gaseous. liquid. Knudsen. solid and 
configurational (molecular sieving) diffusion. has a diffusivity expressed by 

1, 

D = guLc-r 
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\vhere g is a ~eometric term. u is a characteristic ~reloci~. L the characteris~ic path lengtk and E 

the activa~ion energ:. The acti~’ation energy is onl~ used for solid and comigurational difrimlon. 
and is cause for the sieving effect important in microporous membrane separations. 

More recent]>. Shelekin et al.. discussed the permeabili? of gases across disordered siiica 

membranes. In these porous materials. Knudsen diffusion. surface diffusion and molecular 

sieving behavior dominate depending on he gm-stiace interaction. For pores large relati~’e to 
the molecular size of the permeating gases. knudsen diffusion is the Iikel: mechanism controlling 

the rate of transport. In this instance. the gases permeate proportionally to their molecular 

velocit>. and hence. inversely proportional to the square root of their molecular weight. For 

similar membranes that strongly attract the permeating gases. surface diffusion Will enhance the 

rate relative to knudsen diffision. In this study. Ar and CHJ are much more strongly adsorbing 

than He and H2. so are possibly subject to this effect. When the pores of the membrane are 

roughl> the same size as the gas molecule. s diameter. then molecular sieving may take place. Like 

configurational diffusion described above. this mechanism is characterized b: a strong 

temperature dependence and more importantly. sharp dropoffs in permeabilities for larger gas 

molecules. 

Computer sirnulat ions of micmporous solids have grown considerab~ in the past decde 

due to the ad~ent of improved classical and quantum meckutical al=tithms and the rapid grov~h of 
parallel computer hardware (Fiyre 1 ). These sirnulat ions can aid in underst andrng the structure- 

property relationships between the diffising -gases and the mem’kmne. 

To test the assumptions used in 

arriving at equation 3. we recently 

employed a number of simulation 

techniques [2] including molecular 

mechanics to predict E. grand canonical 

Ivlonte Carlo (GCMC ) to simulate the 

concentration in model pores and 

analysis of available pore space for 

different sized molecules to evaluate 

porosity hortuosity effects. The focus 

of the present work has been an 

alternative to this three pronged 

approach. That is. simulate pressure 
driven gas transport in pores. which is 

more like the actual experiments carried 

out in testing zeolite [3]or silica [4] 

membranes. It is generally known that 

the chemical potential gradient is the true 

driving force for diffision. Hence. 
simulation in the grand canonical 

ensemble (constant yVT) is the most 

appropriate construct. To completely 

invtst igate pore diffhsion. we have 

I Inlet Delta CM-ZOO el: 

CM-I. etc. 8 
. d?- - 

#a :ray ;ray ‘-M’ 

+“ 
$$BM 70’4 

0 Serial 

+ 
13 Vector 

MANIAC ❑ Parallel 
, 

‘:& J 

Figure 1 Growth of Computing Power 
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simulated gas mo~emen: arilen b: L 
cnermcai po[mtiai -grachen~ in micmporous 
siixa using a nelvh developed dual contro! 
\oiurne mad canonical moiesuiar 

a:namics method [5]. 

POROUS MODELS 

The wall atoms. Yvhich did not 

mo~’e. \vere posiuoned according to the 

coordinates of a silica model made b> 

expanding an amorphous glass model to a 

ciensit> of 1.5ycc and then further to a 

densi~ of 0.5 ycc as in ref 6. The pore 

size of current generation sol-gel derived 

12000 
~ 

8000keF=+ 
4000 II 

\ I 
Y 

02 
Pope Dia6meter8(an~s!rom~f 

Figure 2 Siiica Model Pore Size Distribution 

silica membranes consists of a distribution and all indications suggest that it maj be simiiar to 

that of our model (Figure 2). That is. 13rinker and Se-@al [4] have been able to demonstrate 

molecular sieving b: preparing membranes that exclude CI-L at detectable levels. but allow He to 

permeate at a rate of 2.25x1 0-: cm;/cm2-s-cmHg at 31 SK. In the presen~ work. He. H2. A. and 

CI-i4 tmodeled as Lennarci-Jones panicles at 300K. 450K and 600K) permeabilih are determined 

for the silica models. The technique described below was applied recently to the simulation of 

He. H2 and CH~ permeation across silicalite membranes [7]. Results in that system showed 

considerabl>- accuracy in comparison with experiments and suggested that the expenmentall> 

usable cross-sectional area in [3] \vas approximately 40 times less than ideal. Insights like this 

are indeed one benefit of molecular level computer simulations. 

GCMD 

The Dual Control Volume Grand Canonical Molecular Dynamics (DC V-GCNID ) method 

has recent]: been adapted to irnrestigate pressure-driven transpom of a pure component fluid 
through a model zeolite [7]. While the DCV-GCMD method employs molecular dynamics (MD) 

mo~res throughout the system. each MD move is followed by a series of GCMC-like insertions 

and deletions of fluid molecules in each of WO control volumes in order to maintain the chemical 

potential in the control \’olumes constant at a desired \’alue. B: measuring the flu, and the 

gradient of the resulting steady-state densi~ profile. the diffusitivit} of each fluid component. i. 

in the presence of a chemical potential or pressure gradient. transport parameter can be 

determined from equations 1 and 2. W’ile DCV-GCMD has been demonstrated for bina~ color 
diffusion [5]. in this work we have extended the method to model a fluid experiencing a pressure 

gradient while confined in a porous system [7] as well as running the code on a massively parallel 

computer. The pressure ~mdient is achieved for a pure component fluid simply b> choosing 

chemical potentials in the two control volumes which produce two different fluid densities. 

Gradient driven gas diffuiosion simulations in pores is being tried b} several others [8.9.10.11]. 

The fluid-fluid and fluid-wall interactions were modeled with the cut and shifted Lennard- 

Jones potential. the cut-off distance taken to be 2.50 for all interactions. The parameters were 

taken as those for silica hydroxyl oxygens [12] and He. Hz. CHd and Ar [13] ((s0=3.0 A. 
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Lorentz-Bertholot combining ruies used. The Si atoms in the silica model were neglected as the: 

are effectively shielded by the 0s making up the tetrahedral network. The densities in the system 
were initial]? set only to give ample fhx for study but can be controlled to the desired bulk 

pressure. the temperature \vas 300K. 450K. and 600K. and the MD time step 2.9 fs. 

The silica system was 139.00H long consisting of 8x3x3 of the models described abo~’e. 

thus the x coordinate stretched from 0.0 to 139.@+ Periodic boundq conditions were 

employed along all planes and at x = 0.0 and x = 139~j-I. Each control volume encompassed the 

entire pore cross section (_Figure 3). W’le we have positioned the control volumes for both 

systems inside the pore. the> could just as easily ha~’e been positioned outside the pore. 

enabling one to model entrance effects. 
The simulation was equilibrated for 100.000 timesteps after which averages were 

accumulated for >100.000 steps. The simulations were carried out only long enough to see a 

reliabie and repeatable flux. At this point. the permeatbiliq can be computed based on the 

knowm pressure drop and membrane thickness. The algorithm employed in this uork is a 

massively parallel version of the DCV-GCMD. Brieflj. this parallel algorithm employs a 

superposition of two different parallel algorithms: spatial GCMC and spatial MD. V-ith this 

parallel DCV-GCMD algorithm. simultaneous insertions/deletions can be attempted in each 

control volume thus for this work. 64 insertions andor deletions were attempted in each control 
volume after each MD step. For this simulation. carried out on 250 processors of Sandia-s Intel 

Paragon. each MD timestep and its associated 64 attempted insertionsideletions in each control 

volume took -1 cpu second depending on the number of gas particles. 

RESULTS 

The axial densi~ profile (p(x)). determined by a~feraging the number of fluid molecules in 

1 OH wide bins is shown in Figure 4. From this figure. we can see that the density in control 

volumes A and B are paff; = 0.030 and 0.0035. which correspond to bulk pressures of 20 and 2 

atm. respectively. While these conditions are currently unattainable experirnnetally. the results 
should still be valid if the Gas-Gas interactions are much fewer than the Gas-Membrane 

interactions. Based on the low densities. we have assumed this is the case and a concentrations 

dependence is not expected. The axial densi~ profile in Figure 4 shows approximate Fickian 

behavior. namely the dropping densi~ from the high pressure to low pressure surfaces. We have 
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calculated the flux via IX-O different methods [1 1]. the flu. plane method and the control volume 

flux method (J’ and ~. respectively): 

(4) 

: .; M(B) – .11(.4) 
~= 

4AM,, A’,,,”< . (5) 

\vhere ~“LTR and jRTL represent the net number of fluid molecules which move through each fluY 

plane (two \vere used in this work. one at x = 70.Ocr~ and another at the periodic bounda~. x = O 

and 140.06H) and ,lpl~~~ is the number of flux planes (2 for this work). ,kf(B) and Al(.-l ) are the net 

number of insertions (accepted insertions - deletions) in control volumes A and B. respectivel~. 

At is the MD timestep. AYZ is the cross sectional area of the model. and ,l-,lePs is the number of 

hlD timesteps. The fluxes. calculated via both methods (reduced by multiplying by ~H~(m@” ) 

-). and the resulting permeabilities computed from equation 2 are showm in Table I. 

From Table I we see that the fh.ues calculated via the two methods agree quite well and 

yield a value for the permeabilites. for silica[ 1 ]. These values are considerably higher than the 

experimental values given above at 3 13K suggest that the densih of this particular model is too 

low for comparison with the molecular sieving membranes of Brinker et al. [4]. The reason for 

this is that the relative elementa~ volume for the thin films is probably on the order of 100nm or 

essentially the thickness of the layer. Since our model is less than one tenth of that. the densit} 

of the real system overall can be greater than that of our model and still have the same 
permeability. Another view of the results through the mesoporous model can be seen in Figure 5. 

where the permeabilities are plot-ted as a fimction of the in~’erse square of the molecular weight. 
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Tabie I. Fluxes and perrnea”Dilities from DC\”-GC\lD sunuiauons 

He(300K) I 3.5e-5 3.8e-5 I 3.500” 

H2(450K) ~.-le-! 1 .9e-5 2.300 

H2(300K) Z.3e-5 ~.~e.~ 3.000 

.4r(600K) 4.7e-6 4.Oe-6 180 

Ar(450K) 2.3e-6 3.5e-6 70; -- 

.W300K) ? ?e.6 - .- 3 .5e-6 190 

CH4(600K) 3.le-4 2.8e--l 300 

CHJ(450K) 8.Oe-7 7.Oe-7 80 

CH,(300K) 1.le-7 3.le-~ <10 

He (Mixed 300K) 1 .4e-5 1 .3e-5 2.700 

CHJOVlixed 300K) 3.oe-5 3 .Oe-5 <]0 

o~ Qcc Si]ica Model 

He(450K) 4.8e--l I 4.7e-4 646.000 

He(300K) 4.7e-4 4.8e-4 737.000 

H2(450K) 5.7e-4 6.Oe-4 841.000 

H.(300K) 7.oe~ 7.le-4 1 .o~o.oo(, 
. 

.W450K) 9.4e-5 9.le-5 184.000 

-4r(300K) 1 .5e-4 1 .3e-4 213.000 

CHJ450K) 1 .Oe-4 1 .Oe--l ~60cO()() 

CHJ300K) 1.6e-4 1 .ie--l 307.000 

He (Mixed-450K) 1 .4e-4 1 de--l I 700.000 

CH4(Mixed-450K) 4.Oe-5 4.Oe-5 206.000 
He (Mixed-300K) 2.3e-4 2.3e-4 776.000 

CH,(Mixed-300K) 9.Oe-5 8.Oe-5 300.000 

A straight line through the origin should re~~eal the knudsen permeation 

mesoporous membranes where the molecular ~’elocip dictates the fluid tranport. 

DENSE SOLIDS 

expected from 

While the above discussion concerned the permeation of gases in meso- and microporous 

solids. the following examples describe the diffision in denser solids. The applications are 

different. but the study techniques remain the same. That is. making proper assumptions about 

the interaction potentials and solid structure are paramount to obtaining usefid information about 
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the transport properties of the diffusing bed>” within a reasonable simulation time frame. Again. 

massi~el} parallel supercomputing helps when applicable. 

The first example concerns the diffision of cations through calcite. and is pan of a 

program funded by the National Aeronautic and Space Administration to assess the prospects of 

Figure 5 Experimental (below) and simulated diffusion of Ca- in calcite. 
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Figure - The aenslq profile of I-iel-i: in Dol>lsoburylene I 
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organic species on mars. Figure 6 shows the results of the experimental and simulated diffusion 

of Ca in calcite. The agreement is reasonable and suggests that the activation energy is 

approximate] 300 kcabmol [17]. The second example is of the permeation of He and H2 doum a 

concentrations gradiern within a model of polyisobutylene. Figure 7 gives a plot of the gas 

densi~ as a function of position within the polymer model [18]. Initial conclusions of this work 
suucest that the timesteps were so small. that a relatively long time was required to reach =. 
equilibrium. 

CONCLUSIONS 

We ha~~e demonstrated the usefulness of DCV-GCMD for investigating the sieving nature 

of microporous materials by applying the method to a model silica system. Work is currentlv 

undemay to apply DCV-GCMD to multicomponent fluids under different conditions in other 

silica and zeolite models. In this work we tried to exhfbit the pow~ and usefulness of massivel> 

parallel computer simulation in understanding gas flow in microporous SOMS. The theories in use 
for zeoiites may work well for amo~hous silks membranes if the pores are of molecular 

ciimmsions. DCVGCM D simulation allows comparison with the most rekwant experiments in 

membrane resmrch. that is pet-mat ion of gases and -m mixzures. 
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NIOXTE-CARLO SI\IULATIO?i OF BIOLOGICAL PROTECTIO\ 

FOR REPETITI}T PULSE ELECTRO\ ACCELERATOR 

Ya.Z. Kandiev. V.\”. Hokhoi 

Russian Federal Nuclear Center - AU-Russia Scientiilc-TechnicaI Institute of Technical 
Physics (RFNC-JWIITF). Snezhinsk Russia. 456770 

Introduction 
Currentiy there is a development effon undemav at T’NXITT focused on studying the ki.netlcs 

of processes that decompose suh%r and nitrogen otides in flue gases by repetitwe puke electron 
beam In the framework of this effort there is ongoing development of the accelerator with 
parameters: beam cument 1=2 L& accelerated electrons energy up to 1 Mel”, pulse duration T=50 ns 
and puise repetition frequency up to 500 Hz. Elecmon beam will exi~ through thin timnium foii of 
output window and will be slowed down in air layer -1.5 m thick some beam ener~ wili be 
transformed into Bremsstrahiung with ended energ 1 MeV. 

In spile of the fact that the portion of beam ener~ converted into Bremsstrahhg in air per 
pulse is small. repetitive mode of operation with fairly hi-@ pulse repetition rate can lead to fairly big 
raaiation exposure dose for persomel. if there is no biological shielding in place to surround the 
accelerator 

To determine required thickness of biological shielding walls. in several feducial points there 
has been perfonrted computation of Bremsstrahiung dose resulting from interaction be~een 1 hleY 
electron beam from the repetitive-pulse accelerator and output window’s foil. beam decelerating air 
layer. assuming various wall thickness 

It was demonstrated that hi-ti pulse repetition rate -500 Hz necessitates selection of concrete 
s’hieiding walls -100 cm thick to protect personnel against radiation 

The computation was performed by PRIZNIA code ~ef. 1 ] which enables consideration of 
the problem in fill formulation. The code incorporates versatile capabilities m tiescnbmg geomet~, 
sources, composition of materials, and computation results, It allows for computauon of palhs for 
different nature particles (neutrons, photons, electrons. positrons. and ions ) accounting for their 
mutuaJ transformations For the purpose of solving the probiems requiti: computation of small 
probabilities-linked functional (for instance, protection a@nst radiation detection problems, etc. ) 
there has been developed cost function simulation method which pennhs to tune algorithm onto 
features of the specific problem. Development of this method reiied on the assessment b> ‘\tisits”. i.e 
required result is taken only in the case if a panicle crosses inte-gration region (detector) 

If. in computations based on this method. one evaluates the number of pamc]es which for the 
first time have visited integration region along with evaluation of required functlonais, it becomes 
possible to get the assessment of benefit kE obtained in comparison against analo-gue simulation 
method 

k, = “- 
1,0;1” 

where t I - time of computing one histo~ bv analo-gue method. 
I. , GH , tH - average number of particles - first time \tisitors of integration region. relati~’e error of this 
result. and total time of computations, respectively. in non-analo-gue simulation method 
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To ~mdlca~e prociuced results. there nm been done compu~anon oftne dose crea!e~ f-’> 

scattering on air of ‘:-racilaIlon from 0’ Co-source a; 2 bg alsuince from the SOUiC~. m the geome:r’ 
aesctibe~ m [Ref 2] Tne results of computation are compared agams: the resui~s of “Den: rmMk”’ 
experiment ~ef 2]. thus senlng as a test for the method deveiopea to e~aiua~e Bremssmhiung dose 
beyoni acceleraror”s biological protecnon 

Fo: the same purpose there were petforrned tests of the method fo: computmon of’ 
Bremssrrahhq proauctlon and ener-q-angie rimiwtion of photons by comptison of measurement: 
resuhs presented m Ref. 3 ] agunst results under PRIZM-4 code, 

The above-named probiems. because of big optical thickness of bmiers and relatively smali 
sizes of detec~ors. are reduced to small vaiues assessment probiem. Thus. there is a need in use of 
non-analo=me simulation appararus incorporated m the sofime complex PIUZN14 Brief ckscnpnori 
of non-a.naio-gue simulation method as it is implemented in this sofmae compiex is given in ~ef 4] 

Computation of Bremsstrahlung Dose Behind Accelerator’s Biological Protection - 
Formulation of the Problem 

Computation of Bremsstrahhmg radiation dose which is created in interaction of accelerator 
electron beam with output window foil, iayer of air. and with concrete, was carried out for the points 
%1-7 shoum on fhgure 1. 

. . . . . . . . . . . . . . , . . ._ : . . :, . . . . . . . . . . . . . . 7. :. : :..,.::<-,. *._;. . . . . . . -,:+ . . . . . w.+- +.4.- . . . . . ~ % -.-y. : . . . ..+.-.+.-J.--: 
. ..-’ ..-= -.. . . . . . . . . . ------- . . . . . . . . :. .,. .=,.. .r.-:-: .. :: ..{ ..-:.: ..,. ---- , -:. .’...-.. ,<...:: -.%+.. -.. :.:?X-..:--- . . . . . . . .. ----- .: . :...,.-,= :.. 

. . . & ..4- ..-= - -:.. . . . . . . . :----- . ,, . . . . ..-.-. $ .;.-’ .4..:..- ..:.-, ..”::. Y.- . . . . :...::.<.:4:.....>. :. ...,-. ~--<. 
. 4 

. . 
—. 

~~ -/ El JJ IIi!a ~~ -i ~ Accelerator 
. I b]olog]ca.1 
. protcctmn detector number 

. . . . . . . . 

I & 
1 1 . . . . . . . . . . . 

Fi-gure 1. Relative position and sizes of the accelerator and test box 
(unequal scale, all sizes are in m) 

Detector #6 is located above upper roofig of the test box detectors #1-4 are located on 
horizontal plane which goes throu-gh beam axis, detector #5 is located on the level 2.125 m. Detector 
#7 is inside test box and is situated 15 cm above beam axis in vertical plane, and is shifted 1 cm 
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forward born ourpur window surface Internal hei-ht of the test box 1s 
. 

2.5 m .Acceleratec ele. mons 

mer-~ K 1 Nlel” The eiectron source is specfiea as sum-ace. monoa~ectionai ana monoenergeti: or. 

tne m~emal surface of the foil in acceiera~or-s oulput wmaow and has an area 0.5x0.1 rr.: 
Electrons are normal tncicieni omo window. s foii internal sun-ace. they are un.ii-oti> 

distributed throu-gh the surface 
\Vaiis of the accelerator box are made of stee.. I 0.8 cm thick. Concretes fonnulauor. 

(weight) 0.0056 H 049830, 0.0171 ~a. 0.00~4 W 00456 ~. 03158 Si. 00012 S ool~~ ~ 
O 0826 Ca, 0.0122 Fe. density P=2.3 ycrr.;. outpu~ window’s foil is made of titaruum 21& cm 
thick Wei-ght composition of the air 0.755 N, 0.2320.0.013 Ar ; density equals to normal vaiue 
llickness ofhall-s brick walls is O 4 m. halI’s hei-ght -9 m. 

Computation of the Dose from ~Co-source Gamma-radiation Scattered on Air (test 1) 

Correctness of photon transport in barriers with big optical thickness and complex geomet~ 
was uerformed through comparison of the dose horn air-scattered gamma-radiation emitted by ‘Cc 
special con.tl.guration (see 
experiments in the vicinity 

fi~, 2) source, as it was computed by PRIZMA code, and measured in 
to the ground surface. 

I 
! 

I 
, Rwf slab (cmxe!e) 

. . . . . . . . . . -., 
*3U km. 

230.9 

1 

Source 

9 I 
..:~: . . . . . , . .’ . .,j~onom {com*e, \;’ . . . . .-.-.’ I 

,4 
4 “’’’””’ ‘ ‘ i’ 

I 

: ‘GROUND 

Figure 2 Vertical cross-section of protective box. with concrete roof slab 43 cm thick shown. which 
comesponds to the confkyration of confined source in expenmems on measurement of atmosphere- 

scattered radiation 

Fi-rgre 2 shows the geomet~ of protective concrete box for 66C0 isotope source used in 
computations. the geomet~, with maximal approximation (we do not Imo\v the desi-gn of the cart 
and container for the source). describes geometry oft he box used in experiments ~ef, 2] 

The computations used three source cordi-yations 
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● 

● 

● 

open source with a beam. :olilma~ed m ~emcal cone wmn soiid angie of 150 5’. m h case ~on;: 
rmg 3 \vas put on the edges of ~valis 1. beam IS formed DV rhe nng 
the source covered b} concre~e slab 21 crn thick. 
[he source covered by concrete siab 428 cm tkck 

Radlauon detec~ors used m computations are atr-filied spheres 10 cm in aiamete: Detectors 
were placed al various distances horn the source m the range 50-700 m. Hei-ght of aetectors reiatl~e 
to the earth surface is 1 m. 

%tal}mg the problem of computm: exposure dose for an open source we decompose it on 
foliowmg element~ probiems [4] 

Radiation transport into delector located in erturting and scattering medium. System’s geomet~ - 
spherical. 10 cm diameter detector is snmaled in the center of the system Soiution method - 
method of concentric detectors. 
Radianon rranspofl in optically thick air layers. System’s geometry - spherical. in the center of the 
system is located 10 cm diameter detector. Solution method - exponential transformation 
Radiation transpo~ in optically thick soil Iayers. System’s geometry -planar, soil-air bound~ 
setwes as the detector. Soiution method - exponential transformation. 

When calculating exposure dose for coniined source. one more problem is added to the three 
above-named element~ problems 
4, Radiation transport m optically thick layers of concrete. System’s geometry is determined by the 

geomet~ of protective bo% external surface of the protective box acts as detector. Soiution 
method - exponential transformation. 

Comparison of computation resuits versus experiment for the power of exposure dose at 
various distances born the source is given in tables 1-3. 

Table 1 
.Measured and computed exposure dose (@Vh-lCi-l) for open source 

with the beam collimated in vertical cone of 150.5° solid angle 

Expetient PRLZM4 

Distance, Number of photons Benefit 
m Exposure dose, Exposure dose, incident on detector b 

~-lci.l ~-lci.l (per source photon) 

50 270 = 0.087 ~]3=051 C.2C&o 048) 10-’ I l~]o’ 
100 10.5 E 0.087 8.39 z 0.2 (9.07ko.22)”lo4 j 3.610d 
zoo ~74=oo58 779 AO(y ---- - (2.444 024)” 104 I 1710’ 
300 0.86 k 0.038 0.811&0.013 (8 8W.17)1O’ I 39105 
400 0.302:0.003 0,321 iz0.0077 (3 .54~.095) 10-9 j,~ 105 

500 0.112:00022 0. 128 M.0027 (1.4 M. O37)”1O’ I 1410’ 
600 00523 = 0.0026 0.0574MO013 (6.33 M.19)lV10 I 2.5”106 
700 O0267a.00016 O 0246KI 00039 (2.625 057)10”]G t 54 10b 

● * 
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Distance, 
m 

5(J 

1 OCJ 
zoo 

300 

400 

500 

600 
700 

Distance. 
m 

50 

100 

400 

500 

600 
700 

Table 2 

ileasurea and computed exposure dose (@4%-’Cj-i) for the source 
covered by a layer of concrete 21 cm t-hick 

Exposure dose, 
~~n-l~j-i 

Number of photons Beneii: 
Exposure dose, incident on detector L 

@Uh-iCi-’ (per source photon) 

2.53 =0 039 
0.802 = 0.0022 

(1.64 z0.022)’10-: 

2.28 = O 064 (3.8?5.011) 10-’ i ~o]Q- 

0,822 = 0025 (I.38H044)104 I 241e: 

(1.68 20.055)’10”’ (2.7%0,10 )”10-’ i 1.5 ICC 
\ 

(4.43 =0.013 )’10’ I (4.89 z0.10)10-i (8.29+0 .21)10 -’C I 431cr 

(1.59 =0.011 )”10-: i (1.62 =0.065 )10-~ (2.71 +0.14 )”10-10 I 7.1”1(?’ 

(499 =011) ”10-3 

(1 78=0.11 )10-; 
(6 6: n 1,3)” 10< 

(546 E 0.17110-3 [ (8.6%0.35)10-1; I :~lo- ‘1 
(2.1930 .10)”10-3 (3.60M.23)”10” i 3 blo- 

(- 70= 0.2)” 104 (1.14 fo.039) 10-’* I 1410’ 

Table 3 
Nleasured and computed exposure dose (pIUh-lCfl) for the source 

covered by a layer of concrete 42.8 cm thick 

Exnenmen: 

Exposure dose, 
p.R’l”’Ci-’ 

(1.31 =0013 )10-2 

(316 =011)10-’ 
(101 =0 13)”10”3 

-- 

-- 

.- 

1 Number of pho~ons I Benefit 
Exposure dose, incident on detector kb 

~-ici.i 

I (per source photon) 

(2.39 =o.lo) ’lo-i (3.!? 9=0.13 )”10-’ I j,~ lo> 

(7.24 =0,32 )”10-2 (1 .25+0 047) 10-” I ] 9]()’ 

(1.58 =0076 )”10”2 C 713.11) 10-’0 I 1 110- 

(408=012)10”; (7.31 fl.22) lo-i’ I 3410- 

(1.21 =0067 )10-: (2 104 14) IO-’1 i 5s 10- ,- 

(4.28 z 023) 10A I (74!253 55) 10”:: I oo l@- 

(1 41 =0076)10+ (233 fl.15) 10-1: I 53103 
(545 = 0.20) 10-$ (8.23534) 10-1: I 1310’ 

Apparent to the eve is satisfactory matching of computation and experimental results for 
confined source, and some discrepancy at small distances for the open source The existmr 
discrepancies. to our view, are explained by the absence of accurate’ iriformatlon on concret; 
formulation and source can (for more accurate accounting for scattered radiation inside concrete pit, 
for the case of open source) 



Computation of Bremsstrahiung l“ieid from Be. Al. and Fe Targets (Test 2) 
Compuranon method wixch cietemnmes }Ieici of Bremsstrahiung raalanon generated fror. 

mtera:lion bwween accelerated eiectrons and air. and eiemems of acceieratoi’s s:mcmre ~~as tested 
by comparmg PFUZhl+-computeci and experimental vaiues [Ref.3 j of me total :leid anc an:uia-- 
dm-ibunon of Bremssuahlung generated in Be, .A1. and Fe targets nadla~ed by 1 Nfe\” eiectron 
beam Target thickness was chosen horn the condition of compiete eiectron stoppin~. exDenment’s 
schematics is snowm on Fggure 3 

In this case decomposition gave only one elementa~ problem. 
1 Radiation transpo~ into detector located in vacuum. Detectors With radius 0.1 cm are localed on 

1 m radius sphere m the points corresponding to various poiar argies relative to the s}mrnet~ ~tis 
of the system. Solution method - method of probe particles, 

Computed results of total Bremsstrahlung yield for various targets are compared versus 
experimentally measured in Table 4. Angie distribution computed results are compared against 
experiment on fi-gure 4. Comparison of provided results gives -grounds to speak of satisfaction 
accuracy in computation of Bremsstrahlung characteristics for the situation of Bremsstrahlung 
generation in interaction between the electron beam and air or accelerator’s structure elements. 

Table 4 

Computed and measured total energy of Bremsstrahlung (MeVielectron) 
radiated from thick Be, Al, and Fe targets. Incident electrons ener-q is 1 MeT”. 

I Target I Be .41 Fe 

PRMMA (1.985.014) 103 (6.11 M.037) 103 (1.15 M.092 )“ 10-3 

Experiment (1.56k04)”l@ (5.12N.8) 10-3 (1. OY+3.1)”1O-’ 
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Fi-me 4, hgle distribution of Bremsstrahhy for photons w-ith enerq k>O 05 NleJ’ for thick 
tagets of Be. Al, and Fe. Incident ele Fi-gure 4 Angle disrnbution of Brernsstrahlung for photons 
with ener~ kX.05 Xfel’ for thick targets of Be, .41, and Fe. Incident electrons energy is 1 Me\’ 



Computation of Bremsstrahiung Dose Beyond Acceierator”s Biological Protection 
.%taiyzng the probiem of compmmg the dose of Brernssmhiun: generated m mteracuon of 

accelerator’s eiectron beam wmh outpu? wmioow fed. with iaver of au and concrete. at the DOKH ngk 
beyond accelerator’s bioiogml protecnor. we were abie to outiine two eiemem~ probiems 
1 

. 

Radiation transpon tnto aetec~or located in emitting and scattering medium System’s geomet~ - 
spnenca!. detector 0.1 cm in raaius 1s placed at the system’s center. Solution method - method of 
concemnc detectors 
Radlauon transport in optically thick medium. System’s geometry is determined by the geomet~ 
of accelerator’s pro~ective box. external surface of the protective box acts as the detector 
Soiution method - exponemiai transformation. 

By means of preiimin~ computations thickness of all walk in te~ box except the front one. 
was chosen equal to 1.0 m. thickness of the born wall was taken equal to 1.2 m thickness of steel 

doors - 2x9 cm 
After performing computations for the chosen sizes of protecting ~stern. following ~a.iues of 

absoriied dose D of Bremssrrahiung were obtained, the values are per one source (beam’) eiec~ron for 
detector locauons 

1 Detector #l - D=l .28.10-z: Gray/electron, r8.3 YO 

. Detector %,4.6 - D=C.98. 10-*T Gray/electron. 0=9.3 ‘?40 

:. Detector +5 - D= 1 82. 10-z; Gray/electron, =8.4 ’30 

Benefits & for Detector # 1-6 are shown in Table 5. 
Tabie 5 

‘ Number of photons incident Benefit 
Detector number on detector (per source b 

electron) 
Detector =1 I 372 ICI-’- .eF8.3 $0 1 2910” 

Detector ~3.4.6 I 3.1s 10-’-. G9.3 $0 I ~~ *01: 

Detector #5 I 4.6610-1: . r8.350 I j~ ]ol~ 

The dose inside test box was estimated by means of de~ector H and through computation of 
dose in detector # 1 for the case when front wall thickness is equal 0.2 cm (for electron capture), we 
assi-gned number #1a to this detector for fimher cases The computation gives foilowmg values of 
absorbed dose for these detectors 

1 Detector #la - D=Q ~~. 10“15 Grav/e]ectron. ~5 8$6 
-i Detector #7 - D=O. 73. 10“19 Gravielectron. 0=9 ? o 

For the purpose of studying the feasibility of reducing thickness of the from wall. there were 
computations done for the case when front wall is 1 m thick Following values of absorbed dose in 
detectors %1 (assi-med number* lb to this detector) and 2 were obtained for tlus case 

1 Detector *I b - D=3 73. 10“~c Gray/electron, 0=8 8 to 
-! Detector #2 - D=] .&I. 1 ()”:- Grayjeiectron. G1 O 4 ?O 
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Recalculmng obmned resuits mto absomed doss ?o~~~i P for the narcies~ (m tne sens: C: 
reouuements to bloio~cal protection lac:eierator”s operann gmoaewlt hbeamcument 1=2 L> guise 
auratlon F5G ns. and puise repetinon frequency 500 Hz gl~’es foliowwg results 

1 Detector *1 - P=l 44. lC< Gray ’hour. ~8.3 ?O 

.! Detector ~3.4.6 - P=l. 10.l C+ Gray;hour, 0=16 ?O 

3 Detector =5 - p=Q, cI j 10+ @ay:hour. m8 ?. 

For the thickness of iiont wall of 1 m similar recalculation gives foliowtig values 

1 Detector #lb - P+.2010”s Graylhour, 0=8.8 $0 
-i Detector #2 - P=1.8510+ Grayfhour, o=1O.4 90 

For the power of absorbed dose inside test box we obtain: 

1 Detector Ala - P=2.55.10Z Gray,tour, -5.8 ?O 

-! Detector #7 - P=O.82 10~ Gray/’hour, 0=9 90 

The above given resuhs attest to the fact that chosen parameters of the test box assure dose 
levels in possible personnel locations do not exceed allowed le~’el of the ISonns of Radiation Safe~ 
hTIB-96 of 10“s Gray/hour. 

Worth noting is that the above given values of the benefit are somewhat understated. since 
when estimating kz, the number of ilrst-~i.rne ~isi~s was substituted by the total number of visits 
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AIULTI-PARJLMETER MODEL OF TURBULENT hUXING 

IN TWO-DIhlENSIONAL FLOWS 

1’.1-. Nikiiorot, }-L. I.. }-anilki~, ~.\-. Zn2rov2, YL.A. Yuair. 

RF~C.v~II~~, 607190, S2rov (Arzamas-16), Russia 

ABSTRACT 
Tne paper describes Nikiforov’s multi-paramete: mode! oi turbuient mixing 

implemented in the EGAK program system [1]. The model uses 9 indepencien~ 
varizbies ior which evolutionary equations are solved. For the variables a!! tne 
Reynolds tensor components, turbulent energy dissipation rate, two components of 
mass turbulent flow velocity, squared density fluctuations and tots! turbulent 
ener~ are used. The model is a 2D anaiog of lD VIKHR’ technique mode! [~] and 
invoives turbulence generation both due to gravitational and tangent 

1. EQUATIONS FOR AVEFMGED QUANTITIES 
. 

~(pti) + div(pfiii) = -VP - divaT, 
at 

~(a, p)+div(a, pfi)=div(pDVai), 

~~i +div(~i E) n ~i divfii +D~(~i), 
at 

instabilities. 

~{aipei )+div(aipeiii) = div(pDVaiei) -~iPidiv(ti -@)+ aip&~ 
~T 

Viscous stress tensor q has four components ifi 2D case 

/1 

0,, 612 0 Uik ‘2p O~, 

‘T = (321 CJ2 o e; . 
0 0 033 Gh .~p—@ 

eT 

2. EQUATIONS FOR TURBULENT QUANTITIES 

de; 

() 
—=1111 -e~diW-2e~\’11 -ze~.}’la + I –:~ flw~l++kflwg2- dt -- 

() 
-y@ e~ -~eT -k,coe~ ; 

3 



+ Cz. 

where ii(ul, U2) - veiocity VeCtOi; p - average density oi medium; p, - density Of 

the i-th component of medium; e, - specific intema! ener~ oi the i-tn component 
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Of rnedi~=.: ? - .21’C72~~ ~T%sUTS o~ Medl UT. i ? - DF~SSIJT~ Of tn: i-1~ ,. CGT,90ne7.: :’ 
meaiur.: ~. -voiu~,e concerilratiofi 0! tile i-?h compone~: (~, = J-l /\’): c - Y.2ss 
concentration 0! the i-tti componen; (c, = ~l; ,~f’vt): E - VISCOUS CilSSiD2t10~ FrZt: IC: 

turbuien: energ:; e; - co.rnponen?s of veiocity co JmDonen; fluctuation tense:: 1“: - 

components of deformation rale tensor; W(wl, w2) - veiocily ve~~o: fo: t~t~!li~f-- -, ...,. 
mass fiow; 1? - relative mean square ior density fluctuations; s - rate o: viscous 

dissipation of turbulence ener~, m = E/eT; O=(U:U; )+;(P’U:U:) - toK: 

turbulence enerbq, 

Q(R) = ~ ; a=~ ~T “ 

Superscripts 1 . 2 denote longitudinal and radial 
Transport terms H, being divergences of third 

bulky iorm. Tnereiore, in the originai version of the 
diiiusion approximation ior tnern in the ioliowlng iorm. 

components, respectively, 
order tensors, have quite a 

numerical method we use a 

l-IR = 

3. EXPRESSIONS FOR COEFFICIENTS 

~T 

kw = 
1 

—+—-c T 

6FT 10 e 



FT is a component of the tensor ei~ in a local coordinate system where one of the 
axes coincides with the direction of the turbulent mass flow. 

1 d yq) %> & = –—’ 
p eP~5 P 

1 ap VT Vp 1 ~Pi ~p+_— –— & = ‘— 

p 13PlT p 5T ~ P’ 

\vhere y(q)= $(1 –e-q), g = % — , x - heat conductivity, 
pcP 11 J2eT 

1, = 
~ize 1 
—-scale of turbulence; 

cl) 

D~=2DT, D~=DT, D;= ~DT ‘ 

~T eT 
1 

D~=2c~ —— 
T lq& l-b’ 

b=:+(v+lw. ~= 2(u’*”4;-:RA2’-’! 
Y R 

v,,, v~m, v~~ - components of deiorr,ation rate tensor, 



Resul?s of cornpu:ations 
discussed rnooel are presented 
mixing in ID and 2D iiows. 
mixing at giavitationa~ and 

with the EGAK-B techniaue based or, the above- 
for known problems on slu~~~lng turDujen: 
The iolio~ving prob~ems are consic~reti: turbuien: 
shear instabilities, Mesnkov experiments ~n — 

cyilncirica! geome~~ and shock tubes. The computed aata is compared witr 
exr3erimental ci2ta and results of computations with otner techniques. The 
ag~eement is good. 
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“ Numerical modeling of experiments with fuel pellets 
at pulse reactor “ 

Kande\ Ya, Z. Koqbayev R.hl 

Russian Federal ?iuclear Center - All-Russia Scientific-Technical institute of Technical 
Physics (R.FNC-\Tii). %tezhinsk. Russia. 456770 

To solve the probiems connected With numerical modeiin: of experiments. cmied ow z 
pulse reactors, the upda~in~ of the PIUZhlA base code - the coce PRIZXL~-D ha been 
deveioped at J7WITF. 

Peculiarity of this code is the special source - fission points distributed by eigetinc~ior. 
within reactor core. 

To dirninute restrictions on application of nonanaiog modeling, the process of den~in: a 
source and the process of modeling traje~ories to obtain necess~ results are separated 

This organization of calculation cycle allows to increase efficiency of caicuiauom 
essentially. 

Besides. the special method of modeiing particles trajectories which is reahzed in the 
PRIZN1+ compiex allows to ob~ain correlaled results of several versioru of a problem in one 
calculation 

To illustrate the capabilities of the code, the problems of numerical modeling of 
expedients w-ith fuel tablets at pulse reactor are considered. 

1. Introduction 

At present hlonte-Carlo the calculations of linear problems of radiation transpon in various 
compositions and units of facilities are carried out at J%TITF using PIUZNL4 code[ 1 ] Broad 
capabilities for describing geomet~, sources. strucrure of materials. for ordeti: the results are 
incorporated in the code. The possibiii~ is provided to carry out calculations of panicles cascade 
transpon including (neutrons, photons. electrons, positrons and ions) With allowance made for 
their transmutation. To solve the problems in which it is necess~ to calculate fi.tnctionals 
connected with small probabilities (e.g. problems of radiation shieIding. problems of detection. 
etc. ), importance biasing scheme has been developed which permits to adapt modeimg algorithms 
to a spectic problem while developing tlus method due account was given to the fac~ that in the 
code the evaluation “on visits “ is applied, i.e. the required result is rerecorded oniy if particle 
imersects the area of inte-mation detector 

If using this method in addition to required functional one evaluates the number of panicles 
}isiting the area of inte-gration for the first time it is possible to obtain an estimate of a prize kr in 
comparison with the analog method of modeling 

, 
h-p=- 

I.D;IE 

where t 1- is such time of one history using anaiog method, 
Im. crfi. t“ - are average number of particles visiting the area of integration for the first time. 
relative error of this result and total run time. respectively. for nona.nalo: method of modeling 

All this enables to model numerically experiment and ensures necessmy accuracy of the 
results With much lower expenses than those spent on organization and conduct of experiment 
Similar calculations allow to predict beha~iour of radiation in an experiment. compare results of 
calculation and experiment, update parameters of the experiment 
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At the same time there me ci~ses of probiems. m wi-ucn either source. o: resu!:s ha~c SU:’:. 
specific features. that tnev cannot “be soived tn. the P~l\ code Therefore. there IS a nec~ssi~~ 
of creating sneciabzed codes wi~h the same main cauabiimes as PIUZXl\ code PRIZ3L%.D coti~ 
1s one of them It is intended for soi~mg probiem connected vmn esnmanon of nucie~- remors 
and criticai assemblies 
,’ Expenrnental Phvslcs Di\ision of lNITT- calculated experiments on melnng tabie~s cf 

r~actor fuel in a retort placed aiong the axis of channel of puke reactor IGIUK [2] 
Tine report describes briefing capabilities of PRIZM.A.D code and calculations results 

obtained during planning these expenrnems. 

2. PRLLNLA.D code. 

Peculiarity of the code is in special source - fission points distributed by eigenfunclioc 
within reactor core. Depending on conditions o.f a probletq fission points can emit 

a) neutrons and photons of fission spectrum 
b) only neutrons of fission spectrum 

To diminute restrictions on application of nonardog modeling. the process of deriving a 
source and the process of modeling trajectories for obtaining required results are separated 

Calculation cycle is schematically as follows 

El cOunLmg 
Inulai gmerauon of 

‘ ~ B ~ 

Modeling Ira.wmor!cs 

Cvclc + points 
particles cnatied from tisston I 

points and obtasnmg results 
gmcratlon 

r 

This organization of calculation cycle allows to apply nonanalog method of modeling in the 
second pm of this cycle without restrictions. 

In PRIZM.4 complex special method of modeling trajectories (based on marking of a 
particle) is implemented which permits to obtain correlated results of several versions of a 
problem difTering a little in some local area of a system There are three types of such problems 

1 Version with varying composition Versions differ in composition of subsmnce filling 
some volume V. 

2 Versions with increasing volume 1- Volume varies according to the rule 
\~(l)=J’1. V(2) =l”l -\’2 . ..\.(k)=\”] -\ ’2+.. +\-ii 

3 Versions with moving volume Yersions differ in the fact that volumes I’(i), i = 1, k are 
located in different places of a system 

The essence of the special method of modeling consists in the following certain type of 
mark corresponds to each version of a problem (a source particle is marked by all types of 
marking), when particle entries penurbed volume. it spli~s into two particles. and one continues 
random walk in geometry comesponding to the version with penurbed volume with a mark 
corresponding to this version. another one does the same in geometry corresponding to the version 
with undisturbed volume with an appropriate mark. Ln one calculation the combination of various 
cases is allowed. Plots of particles trajectories prior to the entry into of perturbation area are the 
same for each case. Therefore, appropriate calculation results for the versions are comelated 
positively to some extent. Besides, total time of calculation for versions is saved 

Special method of modeling is used in PIUZXL\.D code in assumption of small 
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perturbations In this case. distribution of fission points of the source is the same fo: a! veTs:cT.: 
of the probiem and corresDonas to dlstrikmnon of the version withouI perrurbeci voi’ume 

3. Problem description and results of calculanons 

Tne calculations were perfortnea using PRIZN1%D code with B.+S co~ants [3] The 
results of calculations are notma.lized to one fission in the core of the reactor In all the tabies 
standard deviations are given in percentage 

Geomet~ of the expetient is shown in Fig 1 .2. A fhel tabiet of L.TOz (dn.meter and iength 

of the tablet are 0.58 and 1.5 cm, respectively, the density of uranium oxide is 10.5 g’cm~ J is 
located in a protective reton, which is placed in a centerline of the reactor cimrtnei cenue of the 
retort having the coordinate z = 37.5 cm (Fig. 1 ). To increase the flaction of of thenrml neumons. 
the convener of polvethviene is used contiguous to the lateral surface of reactor v%iiig zcne 
Channel is closed by a carbon fhse born outside. h is required to calculate ener~ yield in the iuel 
tabiet. 

The following conditions of the problem were considered. 
1. Determina tion of optimum thickness of the converter; five vtiants of convener 

thickness were considered: 2.3, 4, 5 and 6 cty ~case with increasing volume). 
2. Evaluation of influence of protecuve retofi material on ener~ in a he] tablet. four 

variants {the case with moving volume) were considered: 
a. fiel tablet without retort, 
b. tablet with an iron retort (p = 7.8 Y’cM3), 
c. tabiet with a titanium retort(p = 4.5 gcrn3 ). 
d tablet with a carbon retort(p = 1.7 ~cti) 

3. Evaluation of influence of235U concentration on radial distribution of ener-g release in 
a fiel tablet. Four variations (case with varying composition) were considered 

a C~~~C~$O:, 

~ ~,:;~,:mo. 
. . 

~ ~T23!~r2380 
0.?! 0.0! 2. 

Using special method of modeiing allowed to obtain the results for 80 versions of the 
problem in one calculation. —— 

Table 1 gives energy yield averaged over the mass of he] tablet 
Fig.~ shows the results for various thicbesses of the convener ~d for Vfious maten~s of 

the protective retort. 
In Table 2 and in Fig~ radial distributions of energy in fhel table[ for various 235U 

concentrations are given (tablet is withoul a protective retort. thickness of polyethylene is 5 cm) 
To evaiuate the efficiency of main calculation, comparative calculation was performed of a 

variant for converter with a moderator 4 cm thick. with an iron protective reton and with the 
structure of reton (3 .b) The time spent to obtain ener-gy reiease value of 7.01 e-3 with o = 43 ? o 
was one-third of the total run time spent on all 80 versions of the main problem Relative 
efficiency was Kv = 17.3, The average number of neutrons hitting in the fuel tablet is 6, 54e-4 
Inference is that run time of all 80 versions using the anaiog method with appropriate errors 
would be approximately 400-fold 

Here the fact is not taken into account that in one calculation positively correlated results of 
all versions of the problem were obtained 
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To improve dependence of radial dcstrhunor. the calculation with SLY v2nOUS !D s c c. s c c. 

1 @ ?C 15 ?c. 36 %. 90 ‘/. J concemrauons of 235L; wu carneci ou~ Results are gver. 1:. TX 3 
and in F1g.5 

Anaiysls of the results obtained snowed t.ha: radii a:snibunon of ener~ m z table: 

depends pracucally on concentration of235U in n 
To evaiuate gadient of aensi~ of neuuor, fielti along the axis of the reactc~ cnanrk. 

calculation was camied out for six variants of fuei tabiet location (z = I 1.75. 15 .?5. 1 ~ ‘j. n: ‘~. 
2775, 31.75 cm), This calcuia~ion corresponds to the case with moving volume lle resuits are 
given in Table 4 and in Fig. 6 

4. References 

1 M. AArnautov& Ya.Z.Kandiev, B. E. LukhminshqI and G. N. Malvsh& “ Monte CariO 

Simulation In Nuclear Geophysics. Intercomparison of the PRIZMA Monte Carlo Code and 
Benchmark Experiments “, ~UC] @O@l~S VO1.7., pp 407418, 1993 

2, A.P Vasilyev, N. V.GOM RM.Kozybayev et al., “ Experimental capabilities of IGRIK reactor 
in research on sa.fkty of nuclear reactors “, International Topical Meeting, ObrunsL Russia, 
October 3-7, 1994 (in Russian) 

3 A.P Vasi.lyev, Ya.Z.Kandiev, \-. I. Chitaikin. h:eumon physics, V.2, pp. 119-123, hf.. 1984 (in 
Russian) 
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Table S Disnibutiou of euerg! release (Me\T;g) in layers JR of the fuel tablet itablel 
uithout retort) ~CH~=4.5cm 

Table -1 The ener:! release (hleI’sz) ill the fuel tablet n]o\ill~ along ofchonnel n~is 
Concel]u’atioo ~ _!iCH2 i I 

of235 L’ I (ml) i Center coordinate of the tlel tablet \ 

I ~ -00 I 3,3?0 I :.0?0 2000 : 2 So. I 29”0 I 
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Fig 1 Experimental setup 
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NUMERICAL SIMULATION OF NEAR AND FAR AREAS 

ACCIDENTAL RELEASES AND EXPLOSIONS 

OF 

Yanilkm Yu.\r., Sofronov \r.N., Tarasol J’.I., Statsenko V. P., 

Piskunov V. N., Kovalel’N.P., Dibirol’O.A., Staanik A. L., Toropovz T. A., 

Ivanova G. G., Shanin A.A. 

RFNC-VNIIEF, 607190, Sarov(Arzamas-16), Russia 

ABSTFUICT 

The presentation describes the 3D program package designed for numerics: 
si,muiation of cfynamics of accidental explosions and releases and their 
consequences in the gioba! scaie. The package is implemented within the program 
system TREK [ 1]. 

INTRODUCTION 
Simulation of 2 full-scale problem relating to accidental releases is a compiex 

problem due to both a large number of physical processes to be taken into account 
and difierent scales oi flows at various process phases. The package includes two 
pnzises of the process under consideration: explosion cloud rising up to the 
stabilization height and aerosol transport in the atmosphere over the 
orphograpnically and thermally inhomogeneous underlying suriace. 

The simulation is based on simultaneous solution of the following physical 
processes: 

● 

● 

● 

● 

● 

at the first stage: 

gas-dynamical fiow of poiydisperse medium; 
turbulent mixing; 
change in aerosol particle disperse composition due to coagulation; 

at the second stage: 

atmosphere hycirotnermoaynamics; 
particie transport and turbulent difiusion. 

Quite a ‘great number of methods have been recently developed for 
simulation of the polydisperse media flows under discussion. However, irrespective 
of the plenty of various methods, in the literature there is practically no papers 
discussing methods suitable for simulation of full-scale probiems, that is the 
accidental release dynamics from the process beginning to the end. 

Within the system TREK an attempt was made to integrate the programs 
designed for numerical simulation of the flows discussed in ful] measure, that is 
foi simulation of the accidental release dynamics from the process beginning to 
deposition onto the ground surface. 

235 

. 



Tne package does not aliou to slrnuiate fiows irorr. the piobie~i beg:nn:ng 
tG tile end without coinputatlon interrupt lorl, eacr. process s~ag~ 1: ~!~~ 
computed seoarateiy, however, using the proemarm within a slngie sys~e~. 
considerably ~acilitates tne transier O: the computed data for one stag: I_c: 
simulation of the second. This procedure can be automated in many respects. Tne 
prlncipa! service and computation package modules have been recenti[ aeveioped 
v’nich aliows to use tne package foi simulation of principal physics! processes 
occurring at accidental reieases and explosions. 

Note that for the near area many probiems are 2D in their formulation, and 
the authors earher deveioped 2D programs within the EGAK program system [2.3] 
for simulation of such fiows. 

1. FIRST STAGE FLOW MODEL 
The following basic assumptions are used for description of the polyaisperse 

medium flows: 
● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

the carrying phase is a gas-vapor mixture composed of several components with 
their equations of state; 
each carrying phase component is described completely with specific ener~ 
and volume concentrations; 
the medium moiecuiar viscosity is taken into consideration only in the 
interphase exchange processes; 
the disperse phase is a polydisperse impurity composed of several coagulating 
components of the active fraction and several components of the composite 
fraction; 
tne collisions of disperse phase particles with one another are not taken into 
account both for each separate fraction and for particles from different fractions; 
separate disperse phase iractions can exchange mass between themselves and 
carrying phase due to the processes of coagulation, condensation, fragmentation 
and aerodynamical entrainment; 
the disperse phase material is incompressible; 
the heat exchange between the carrying phase and particles is not taken into 
account: 
the turbulence is simulated within the k-e model. 

2. SECONID STAGE FLOW MODEL 
The processes are studied in which the horizontal sizes are considerably larger 
than the vertical (X-Y> >Z). In this case the statics equation is used instead of 
the equation of motion for the vertical velocity component. Ii the condition 
(X-Y>>Z) is not met, the equations for three velocity vector components are 
solved; 
Meteorological fields will be set as sums of given background large-scaie 
components and their deviations which are smali. This allows to Iinearize the 
initial equations through rejection of small values; 
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● 

● 

● 

● 

● 

● 

● 

● 

● 

Tne . 2:rn@s Dnere is iorr, a!i:. segregate? Into twc iavers nez~--~ou~i zn~ 
i30unti2r’, iave: iccatet anove t~e nez:-::ouni. ~ne ne2~-eqouni iave: IS 12~e: 
lntc consia~rauofi pararnetrlca!iy, tna: Is b:; ~et~lng efie~?ly: Do,~~~~:.> 
conc!itlons ofi tfi: ~ppe: near.flo~n~ iave: ~gun~am ~~~lng o~ ~n~,;,.~ 

pnenornenoiogica! relations; 
Tne sDace and time variations in density are assurnec s~,a!l. ~nereiore THE 
incompressibility condition is used; 
The turbulence is simulated both within the k-e mode! ant! aige~iaic moce~ o! 
Reynolds stresses. 

3. NUMERICAL RESULTS 
Numericai solutions for a number of test probiems are exempliiiec: 

Gaussian profile transport; 
Aerosol transport taking into account the turbulent difiusion; 
Aerosol transport taking into account tne turbulent ‘“-- ainusion and 
sedimentation; 
Aerosol transport by height-variable wind; 
Ekrnann problem; 
Prandt~ problem of siope wind. 

The above exampies demonstrate a sufficient efficiency and accuracy of the 
programs integrated in the package. 

REFERENCES 
1. Gavrilova E. S., Dibirov O. A., Stadnik A. A., Tarasov \’.I., Toropova 

T. A., Snanin A. A., Yanilkin Yu.V. Abstract of presentation ior the 1 l-th 
A!j-Ru~slan Conference “Theoretic fundamentals and construction oi numericai 
algoritnrns for solving computational physics probiems”, Pushcnino. October 5- 
9, 1996. 24, 1996. 

2. Yanilkin YU.V., Snanin A. A., Kovalev N. P., Ga~rj/ova ES, Gubkol. 
E. V., Darova N. S., Dibirov O. A., Zharova G.J’., Kaimanovich A. I., Paviusha 
I. N., Samiguiin M. S., Simono\ G. P., Sin’kova O. G.. Sotnikova M. G., Tarasov 
V. I., Toropova T.A. VANT. Ser. MMFP, No.4, 1993. 

3. Yanilkin YLJ.V., Dibirov O. A., Goiu~ev A,],, Ismaiiova N. A., Plskuno\. 
\~.N., Gavriiova E. S., Gubkov E.\’., Darova N. S., Znarovz G.J’., Tarasov V. I., 
Shanin A.A. Abstract oi presentation for the 1 l-tn Ail-Russian Conference 
“Theoretic fundamentals and construction oi numerical algorithms ior soiving 
computational physics probiems”, Pusnchino, October 5-9, 1996. 
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Mennoti the pnnc]pd f=tures of 

processes in the pro-gram package 11. 

Tne X rariiauon transpo~ and 

computed in the multi-group kinetic 

taking into accounL some of the aoove 

radiation-material imeracnon process 15 

or multi--group diffusion approxirnauon 

depending on the ciass of problems being solved. 

For the 2D multi-group kinetic approximation the following svstem is solved 

(1) 

~% .~ *mEyJAti,-~ X= E,pAq -~ f q,xn#O)Aq (3) 
p d ,=, ,= , ,Sj ,.j 

&, =E, (r, :,#, fD. Cv, J), 

E, = E,(P,T, ), 

la = ~a,(p,~,q), 

z,, ‘X$7 (P9T*@11 

2’., ‘2.1 +2,1 ~ 

E ,P =&,p(~,q ). 

Qi = Qi (r,~p,v,~,t) -an ~dePendent SOUrCe 

Computations of many thermonuclear fision problems are known to require a 

ven accurate account of X radiation transpofi processes using the kinelic 

approximation+ and, on the other hand, computer simulation of X radiation 

transpofi processes in the multi--g.oup kinetic approximation involves fairiy I@h 

computer costs. Taking into account the above circumstances, at development of the 

package j 1/ a panicular attention was attached to designing efiective numerical 

methods and algorithms for solving the multi-group kinetic equation. 

Mention some features of the methods implemented here The 2D transpon 

equation is approximated on quadrangular spatial grids by a difference scheme with 

an extended template /3/. To solve the obtained essentially non-llnear equation 

system, the KM-method of iteration convergence acceleration /41 is used 

As it is knowrL many of the computed thermonuclear fision systems are 

characterized with a fairly small optical thickness which imposes especially high 

requirements for accuracy of the kinetic equation approximation by an-qhr 
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NUMERICALS RWJLATION OF THERMONUCLEAR FUSIO\ 
NO!VEQUILIBRITTM 

PROCESSES USING 2D SOFIWARE PACKAGES 

RFNC-VNUEF 
607190, Nii liovgorod regio~ Sarov 

Belyakov I. M., Belkov S. A., Vatulin V.J’., Vakhiamova L-L.. 
Vlnokurov O. A., Gamin S. G., Yerrnolovich V. F., Pleteneva N. P.. 

Remlzov G. N., Rezchikov V.YU., Ryabikina N. A., Sofronov I. D., 
Fedotova L. P., Shagaliev RM. 

In works on studying and solving thermonuclear finion problems an impormm 

role is played by computer simulation of n.m.ning processes. The computer simulation 

methods allow not only to study one or another physical scheme and approach to 

solving the problem but also promote reduction in a large number of expensive 

experiments and, eventually. determination of promising lines for solution of the posed 

problem. 

This presentation is devoted to discussion of principal capabilities for 

numerical simulation of material radiation and energy transfer processes in 2D 

thermonuclear tision problems implemented in the framework of connection of two 

VNHEF program packages, i.e. the multi-dimensional progam package for 

computing particle transport processes taking into account panicle-medium 

interaction /1/ and multi-dimensional program package for computing gas- 

dynamical processes /2/. The following is taken into account within the program 

package for computing particle transpon processes: 

1, Spectral X radiation transport and radiation-medium interac~ion 

2. Energy transfer by electrons and ions taking into account medium non- 

equilibrium. 

3. Ener-sz transfer by heaw ions and absorption of this ener-g by medium in 

heavy-ion fusion problems. 

4. Laser radiation ener~ transfer and absorption 

5. Ionization kinetics in the mean ion approximation. 
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variabies To secure such m accuraq. the foliouing W:o apDroacnes are used In trk 

package /1,’ 

1 The numerics! soiutioc of the kinetic equarion m opticail, transua;en: 

regions is implemented in two stages with separa~ion of “pnmaV” and “secona~” 

photons, where the primary photons are photons which have got into the syster, 

horn volume and surface 

sources, respectively; accorciingJy, the secondary photons are photons generated in the 

system from radiation-medium interaction (scattering absorption). In other words, 

solution of the original probiem is represented as a combination of solutions of two 

individual problems set up for the prirmuy photons and secondaq photons, 

respectively. 

Note that in the package /1! the numerical sohnion of the equations 

corresponding to the primary and secondq photons uses essentially different 

angular grids differing both in seiection of the quadrature fonrudas and in the number 

of the photon fli-dt directions used. & the computation experience shows, such an 

approach secures the possibility to conduct detaiied computations with 

simultaneous considerable increae in the computation accuracy 

The presentation provides a more detaiied discussion of this approach 

Exarnpies of numerical computations are given. 

2. The weight factors in the additional reiations used at the difference 

approximation of the equations of transpon by angular variabies are seiected 

taking into consideration the curvilinear geometry. 

Two methods are therewith implemented in the program, one of which is 

based on the known paper by Reed U’.H and Lathrop K.D. /5/. As the presentation 

demonstrates, using such methods also considerably increases accurac> of the 

numerical solution obtained, 

For the 2D multi-group difision approximation the foliowing equation 

system is solved: 

~ivD,gradu, -x.,uj = z,u,,-f a,jx~ul, I = ~ 
l=, 

P+ ‘~x.,u,A ~,-~x.,u,,Au,-~ ~a4,x,,u,Ao, 
l-l J=l 1=1 ,=1 
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u: =v, (r,=, cur, f), 
E, =E, (p, T, ), 

U,p =u,J’.JIL ), 
D, =q (p, T’,,q ), 

2’a ‘.ZuJ (P1Tc701 )> 
*,, =~,,(p,~,q ). 

x., ‘z. +x. ~ 

Enem ‘ transfer b%’ electrons and ions 

Eu =E,(p,~ ), 

D, =D,(p,T, ), 

~ =~(r,:,f). 

The spatial and time approximation of the difision npe equations is 

constructed on the regular difference grid composed of arbitrary quadrangles The 

possibili~ of using both direct methods and iterative methods of incomplete Cholesky 

decomposition type is provided for solving the obtained algebraic equation system 

To achieve an economical computatio~ special acceleration methods are used 

Energy transfer by heavy ions is computed in the one-panicle approximation 

taking into account the Coulomb deceleration on fke and bound medwm elecuons and 

ions 

The model for accounting laser radiation absorption is implemented in 

the geometric optics approximation 

To compute spectral optical properties of non-equilibrium. non-stationa~, 

multi-component, multi-charge plasma the ionization kinetics in the mean ion 

approximation was used. 
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The gas-d}mmicd motion of multi-component non-equilibrium merimrr.. as 

i! was already mentioned. is computed with the program /2: using the La~ran~la~- 

Eulerian method. 

The pro-gram package under discussion uses non-orthogonal spatial ~g-icis 

which enables to take into account features of geometries computed within a 

required degree of detail. 

The method of computing over subregions (computational domams) is 

therewith used. The domain inter-influence is taken into account through 

communication of internal boundary conditions. In so doing the possibiii~ to simulate 

most complex processes in various approximations is implemented For 

exampie, the spectral radiation transpofi processes can be computed in some regions 

in the multi--group kinetic approxirnatiow in other regions in the multi--moup difision 

approximation. 

This capability is based on the conservative combined scheme of computation 

using special intem.al boundary conditions. 

The above program package finds a wide application in studies of various 

thermonuclear fusion structures. 

The presentation exemplifies some of such computations 
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PARALLELIZATION hlETHODS FOR NUhlERICAL 
SOLUTION OF 3D GROUP 

NOh_-STATIONAR}” EQUATIOh’ OF NEUTRON D1FFUS1ON 
FOR NUCLEAR POWER PLANT SAFETY CALCULATIONS 

Alekseyev A.\”.. Zvenigorodskaya O. A.. Shagaliev R.hl 

Russian Federal Nuciear Center- VNIIEF, 
37 hfir ave., Sarot, Mzhni Novgorod regio~ 607190 

Presentiy numerical simulation is one of the principal methods allowing to 

predict behavior of nuclear power plants (NPP) at various (design and accidental) 

modes of operation. This method capabilities have always been and seemingly w-ill be 

limited with computer powers The advent of massively paraliel computers has 

created new capabilities for development of software tools (ST) for NPP simulation 

As was already reported at the previous fourth Mathematical Conference. 

VNILEF has developed the 3D program package TENAR designed for numerical 

simulation of NPP behavior at various modes of operation. beginning with design 

and ending with serious accidents @wt where the NW equipmem structure is 

preserved) 

The package includes programs allowing to take into accoum the follouing 

processes neutron transport and interaction with medium, delayed neutron and 

isotope bumup kinetics, coolant flow in the circulation circuit and lNTP vessel, 

heat transfer in solid elements. tie] element thennomechanics The package can be 

augmented with new components allowing to take into accoum needed processes 

For numerical solution of 3D statio~ and non-stationary problems of 

neutron transpon in the group diffusion approximation this package uses the 

program KORAT 3D /1/. As the numerical solution of the neutron difhsion 

problem in the reactor computations is characterized with considerable amounts of 

computer operations, of panicular urgency is parallelizing this problem on multi- 

processor computers, primarily, on hi-gh-performance distributed-memo~ systems 
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It should be noted tna~ the issues of development of effecuve diffusion 

probiem paralleiizatlon methods are currentiy artadted quite a significant auernion tc 

Several approaches are therewith used. One of most mrtrrton is that based on the 

geomeuy decomposition principle on which we wili owell in more detail somewna~ 

futther. The idea of some 3D diffusion equation parallelization techniques (see, 

e.g., /24fl is that on multi-processor computers the conventional method for 

numerical solution of’ mesh diffbsion equations is used entirely in the whole domain of 

solution. In so doing spwial paralleitile algorithms for solution of mesh 

diffbsion equation systems on muki-proc=wr computers are used Thus, for 

example, while on one-processor computer the known iterative method of 

conjugate gradients with incomplete Cholesky type expansion was used for 

numerical solution of grid difision equations, such an approach employs the 

parallelized version of the method of conjugate gradients /2/. 

Mention one more approach frequently used on a computer with a small 

number of processors: this is the method of parallelization 

This presentation discusses the iterative method 

paralleli.zation based in the program KORAT 3D. It 

decomposition principle. 

by energy groups 

of 3D difision probiem 

is based of the geomet~ 

A it is known the geometry decomposition method idea is that the domain 

of solution of the original problem is split into a number of subdomains (hereinafter 

we will refer to them as computational domains) 

solved separately by the computational domains. 

geometrically non-intersecting and geometrically 

computational domains, Then the inter-influence of 

and the difision equation is 

This permits 

intersecting 

the solutions 

computational domains is taken into account through 

splitting both into 

sets of the 

found in different 

internal bounaary 

conditions which are communicated at spezial iterations We will call these 

iterations as iterations by internal bound~ conditions. 

A number of implementation versions of the geomet~ decomposition method 

have been recently considered for numerical solution of the multi-dimensional 

difision equation. They differ both in the technique of splitting into the 

computational domains and the technique of setting the internal boundary 

conditions. AS our experience and analytical estimations of the geometry 

246 



decomposition method eficiency show, in the general case both these factors have 

quite a consioerabie bearing on efficiency of numerical solution with this method 

Vtious approaches are currently used to sel the internal bounam: 

conditions For example. the well-known RNI (Response hlatrix) method for paraiie; 

machines /5,6i is b- on transfer of one-side flows to neighboring computation 

domains. Some other papers /7/ use Dirichlet-Dirichiet or Dinchiet-Neumarm t}Te 

conditions for the bourtdaty conditions. 

h impomrtt feature of the parallelization method implemented in the program 

KOR4T 3D is using a special type of internal boundiuy conditions /8/. These 

internal boundary conditions are a combination of the complete flow fimction and 

desired fimctio~ with the coefficient in this combination being computed 

basing on a multi-dimensional analog of the limiting sweep factor /9’ This 

setting of internal boundary conditions is aimed at a higher efficiency of the 

method iterative in the intend boundaty conditions. 

The presentation provides a more detailed discussion of the iterative 

parailelization algorithm /10/ implemented in the program KOMT 3D. A simplest 

1 D problem is used as an example to make a comparative analytical estimation of 

the convergence rate of the iterative method implemented in the program KORAT 

3D and some other iterative methods in internal boundary conditions The 

proposed parallelization algorithm is numerically studied using an essential} 3 D non- 

stationary two-group probiem for the RE3MK type reactor facility 
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Propagation of an ultrashort, intense laser pulse in a 

relativistic plasma 

Burke Ritchie and Christopher D. Decker 

University of California 
Lawrence Livermore Narional Laboratory 

Livermore, California 94550 

A Maxwell-relativistic fluid model is developed for the 
propagation of an ultrashort, intense laser pulse through an 
underdense plasma. The separability of plasma and optical 

frequencies (mp and u respectively) for small up/~ is not 

assumed; thus the validity of multiple-scales theory (MST) 
can be tested. The theory is valid when Up/o is of order 

unity or for cases in which tip/u <e 1 but strongly 

relativistic motion causes higher-order plasma harmonics 
to be generated which overlap the region of the first-order 
laser harmonic, such that MST would not expected to be 
valid although its principal validity criterion Up/u << 1 

holds. 

It is the purpose of this paper to present a relativistic fluid 

model in which the approximate separation of optical and plasma 
frequencies is not made. The fluid model results are then 
benchmarked against PIC results as a test of our numerical methods. 

The equations of the model are Maxwell’s equations for the 
vector and scalar potentials in the Lorentz gauge, the continuity 
equation, and the fluid momentum equations, 
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In Eqs. (1) n is the dimensionless normalized electron density and ni 

the dimensionless normalized ion density, which is taken to be 
constant during the passage of a laser with a pulse length in the 
femto-second regime. 

We difference Eqs. (1a) and (1 b) in time but not in space, where 
the spatial problem is defined as a 2D slab with propagation along z. 
The use of Fast-Fourier Transform (FFT) methods to treat spatial 
derivatives has been described previously [1]; here we merely 

outline the techniques used for the equations of the Maxwell-fluid 
model. All terms containing differential operators are moved to the 
right side, which is assumed known from the previous time step. 
Then we Fourier transform the equations in space and advance the 
resulting algebraic equations one time step using the three-point 
central-difference algorithm for the second-order time derivative. 
Then we find the inverse Fourier transform. This constitutes one 
cycle in the temporal advance. We treat Eq. (1 d) similarly, a 
procedure which has already been implemented by others [2] for the 
fiuid momentum. 

In this way spatiai differencing is entireiy avoided, This 
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procedure has the effect that sgatial derivatives, which in real- 
sDace, finite-difference methods are distributed locally over a 
selected number of grid zones and can be the source of numerical 
instabilities, are smoothed globally over all space, thereby ieaolng 

to robustly stable results. We use the standard FFT routine of 

Cooley and Tukey [3], which is a very fast algorithm on a vector 
machine. This procedure, as appiied to Maxweil’s equations, has been 
thouroughiy benchmarked in other applications [1]. 

A similar procedure appiied to Eq. (1 c), however, does not yield 
numerically stable results. The foliowing procedures, however, do 

yield numerically stabie results. Our algorithm to advance the 
normalized eiectron density over an interval dt is, 

‘A;~e.&/~y 
d[ *- 

-—pv 
na= e 2my e 2my nr 

8 (2) 

where the subscripts a, r designate the advanced, retarded function 
with respect to the intervai dt. This aigorithm is a form of the 
weii-known split-operator FFT method [4], in which noncommuting 
exponential factors of the propagator are arranged over a singie 
three-step interval as shown in Eq. (2). The outside factors, which 
contain differential operators, are evaiuated in transform space and 
the middle factor is evaluated in reai space. This procedure is 
obviously iimited to first-order accuracy in dt because (in contrast 

to the conventional split-operator method of [4]) P/y depends on 
space and thus higher-order terms in the expansion of the 
exponential are are dropped as truncation errors. However this 
procedure is observed to be conditionality numerically stable. 

The laser wavelength is 1 pm. The plasma density is 1020 cm-3 

such that the ratio of the plasma to optical frequency, co~/u, is 

0.296. In the calculations we use the scaied variabies: ‘time in units 

Of m-l , space in units of k-l , fields in units of mc2/e, and 
momentum in units of mc. The longitudinal and transverse widths of 

the Gaussian pulse are 10 k-l and 17.67 k-l respectively, where the 

FWHM is 26~ for a Gaussian width 5. This corresponds to a pulse 

iength of about 8.75 fs and a pulse width of about 4.64 ym. For 
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maximum time of 220 CD-l , transverse length of 125 k-l , and 

Iongitudical length of 500 k-l we used 8001, 256, and 1024 mesh 

points respectively. 
The PIC calculations were performed using the code WAVE [5], 

which has been thoroughly benchmarked over the iast two decades 

[6]. We used 106 particles (sufficient to resoive the fifth-order 
laser harmonic) and 512, 256 mesh points for longitudinal, 

transverse iengths respectively equal to 204.8 k-’. The temporal 

interval is 0.2 6)-1 . 
We present results for a laser pulse with a peak intensity of 

1.12 x 1018 W cm-2 (Fig. 1) incident on a cold plasma whose 

boundaries are sharpiy defined at -100 k-l and 100 k-l 
longitudinally and at the grid boundaries transverseiy. The iaser is 
polararized in the transverse direction and causes the transverse 
component of the fluid momentum to quiver as shown in Fig. 2. The 
EM fields are calculated from the potentials [Eqs. 1a-1 b] from the 
relation, 

laz :0 
E=-–—- 

C at (3) 
In the wake of the iaser a longitudinal EM field is generated (Figs. 

3-4) which extends for many piasma wavelengths - a plasma 

wavelength is 2X U/Op in our scaled variables. The fluid and PIC 

models in Figs. 3 and 4 respectively show reasonable mutuai 
agreement considering their theoretical differences. The poorest 
agreement is observed near the laser puise and at the ieft-hand 
boundary of the piasma. This may refiect the use of damping terms 
in the fiuid momentum equations to suppress motion outside of the 
plasma boundaries. 

Acknowledgements. This work was performed uder the auspices 
of the U. S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract No. W-7405-ENG-48. 
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Figure Captions 

Figure 1. Three snapshots of laser intensity versus longitudinal 

distance. The laser enters the region of the plasma at -100 k-l and 
is self-focused as it passes through the region. 

Figure 2. Snapshots of fluid quiver momentum versus longitudinal 
distance corresponding to the second and third snapshots from the 
left of Figure 1. The periodicity is on the optical frequency scale. 

Figure 3. Wake EM field versus longitudinal distance for the right- 
hand pulse of Figure 1. The periodicity is on the plasma frequency 
scale, with optical-scale modulation clearly visible near the front 
of the pulse. 

Figure 4. Wake EM field as given by the PIC model versus 
longitudinal distance as ,a comparison with the fluid-model wake 
field given in Figure 3. 
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Source Description and Sampling Techniques in 
PEREGRINE Monte Carlo Calculations of Dose 
Distributions for Radiation Oncology 

A. E. Schach von Wttenau. L. J. Cox. 1? M. Bergstrom Jr.. W’.P, Chandler. 

C.L. Hartmann-Sian~ar. and S. M. Homstein 

Lawrence ll~ermore ?iatlonal LaDora[o~. L]~ermore. C.J, 9-155@ 

Abstract 

We ou[ilne thr tecnmaues used wnhln PEREGRINE. s 3D Monte Cario code calcuiauon system. lo model [he photon ou[rw 

rrom meaical accelerators We discuss tne metnods used 10 reduce the prmse-space data to a form that IS accurate!) mm ern:len[l! 
s2mplec 

Introduction 

PEREGRIYE IS a 3D Nlonte Carlo code calcuiauon s~stem 
oes]gted specincdi~ for rad]auon therapy planmrg Unlike 
curren: dose caicuiauon me[hods. Which approxlma[e dose 
alsmou[~ons lr. the pauent based on water pnamom measure- 
ment,. PEREGRIXE de[enmnes the dose in the pauem b) 
slmuiaun: me acrual treatment. particie lnteracuon by pamcle 
ln[:rxtlon 

.Acwrale \lonre Carlo dose calculations rel} on a detailed 
unoerstanalng of the radlauon source. One of the operauonal 
reau]rements ior Nlonte Carlo trea[ment pianmng IS [hat this 
ae[allea unaerstana]ng De expressed as a set of dlstnbuuons 
u nlcn mai De raDlal} and efnclentl~ sampled. but which still 

accuratti> retvesen[ the underl~mg phase-space usect to aenve 
[no;: cilslncml}on~ 

Tne na[ure o: me problem IS perhaps best understood m tire 
contex[ of Ftgure 1. A monoenergetlc beam of electrons 
-2 mm d]ameterl strikes a thin I -1 mm) target made of a 
hIgn-Z matenai sucn as tungsten. Tne resulting bremsstrahl - 

un: photons are colhmated by comcal collimator ( typlcall} 

tungsten I. 
Tne pholon beam passes through a beam flattener {also 

known as a flattening ftlter]. uh!ch IS usually made of Cu. Pb. 
or s[eei The beam flattener. being thicker m rhe center. attenu- 
ates the central portion or the bremsstrahlurg pho[on am_rbu- 

t]on Tlus results In a flat energy ffuence dtstnbuuon at the 

patlen[ plane. Although the enewq fluence dlstnbuuon IS unl - 
Iorm. the energy dlsu-ibuuon nself IS not unilomn. since the 

pnotom landing a[ dltierem points on the pat]ent plane UIIl 
have gone through diftenng thicknesses of the beam fla[tener. 
In addluon. non-neghqbie amounts of radlatlon will scatter 
rrom the collimator and the beam flattener and amve at the 

patient plane. Ti-IIs rachanon field needs to be characterized h> 
se\eral distributions of bremsstrahhmg and scattered photons 

TIIIS bl”Orh )* ’as pe~onned tttier rite ausp(ces or rtw ~“.5. 

De,parrnren/ of Energ\ b) the hwrence Ltennore ,Yatlonal 

Ldoralon una’er comract nutnDer W:7405-ENG-4. 

e- 

Target 

Collimator 

Beam 
flattener 

Jaws 

,, 

V;v Tally plane 

— (x, y, u, V, we@M, 5 w Z1.st) 

(x, y, u, v, weight, 5 % zt~J 
– – (x, y, u, v, weight, E, % zlaJ 

F]eure I A s[yhzed pticwre O! the head pomon (>I ,1 TWdICal 

accelcr310: hlmmencrcct!< electrons w!h encrrw< r{ -1 6. h 1~ 1! or 

1$+ bk\ are )nc)dem on a mm I -1 mm). h!eh-Z targc[ such m tunewn Tlc 

brcmswrahtun~ rad83!mn so prnduccd IS collnmxed b> d pnman collImJtm 

also v’PIc311! made imm tungsten Tne l(wwxd-pcakwl nrem~vrti)ung ttu. 

ence dtsrmbuuon I< ‘flaucned’ by a conical prccr o! mt!al. IypIcJll\ made 

lrOI’n coprxr _t_hIs filler Iw]n; ;h!ckcr !n [he cemc: mWUJ.XC\ the CC.nWr por. 

Ilon O! the Ixam. Dnmaz$l> by Xlcn”wne me 10% CnerF> porrlon W the ph,,. 

ton msmouuon Phmons escap!ng the bortom nr tnc xcemrxor head are 

tali]ed km Ia!er anal~sl< 
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Radial distance (cm) 

h~ur: 2 Bacmackmg the Phorons 10 dmr voml of ongn shows Nmcn per. 

t]ons or me a:celcmtor hcaa comnwe to the OUIDU! fiuence 

and may be further shaped by beam shaping hardware such as 
mmable jaws and outer dewces. All of mese dmitruuons 
must be understood In order 10 develop a useful source model 
tor Inpu[ lnm PEREGR1.XE In addltlon. me source model 
aenved from this understanalng must saus+ the operational 
needs of being easii> and efticlently sampied wltn]n the over- 
a!l problem. 

in tnls paper we present methods currently used within PER- 
EGRISE co sat]sly these requlremems. 

Methods and Materials 

Tire slrnulanons were performed using the Monte Carlo 
codes BEA\196 [1] and .MCNP-$B [2]. Nlachme drawwgs and 
ma(enal~ data for the medical accelerators (iIscussed m this 
Pane: vere suppiled b} kanan. Inc [3] Both BEAN1 and 

‘.:i$-i .- 
01 

-0.2 ~ 1 

-0.2 -0.1 0 0.1 0.2 
Radial distance (cm) 

FIeure ? An exoanded Ymu of the region mound the brernssmhlung urge: 

o! me st%l!zcd wcekra!or head shown In F!gurc 2 The sharp eoges o! me tnc)- 

aen! emcrron dlstnbutmn w cie.arl} \ tslble. as IS the broaaer. less m!ense &s. 

mbu[ion o! photons !hm scancr wdmn the tqcr 

\lCXP na\e cmyslcs ‘sw]Iche>” wnlcn alIou trw t?IJsI!?g t,: :r. 
YXnOL> Un\SICa. OrOCe S3e S [n3! OCCUT Wl[n!7. [n: J.”;C;~7J[!’- 

ne~d lC addmon. me BEA\l coce comes ultn tnt CJCJPII” 

to record tne “Pojltlon of last Inttra,cuon 01 J Ddrti(il. J. w: 
as toe num Der OF me celi In which a given D3mc!t w. cru - 

ate<” Ont! those rmruons of [n: trexmen[ new> I\ Ins m,I\: 
tne jaw. Mere Slmulatec. since tn~s porrton 01 tn: ac~eler~l(~: 
aoes no~ VW between treatments. Nlodeilrrg of tire mo~anlc 
!a~s and patient-specinc poruons of tne acceiera(m u I! I r: 
discussed eisewnere. A schemauc of the modeiing pro:e>. 1. 
snown In Figure ;. Tne bremsstra!dung pno~on> are mc~e~ 
tnrough the accelerator head. Pnotons arn~lng at tne botmrn o“ 
the heao are taiited. Their posluon (x,-v). their dlrectlon coslnr. 
IU.vj. as well as their parucle type. energy. weight tio accoun: 
for the various phvslcs-bmsmg schemes used I. and posittrm o: 

last mteracuon :iat, are wrmen to the phase-space tile Tnt: 
coordinate for each parmcle. being merely the tall y-piane pOSI - 
uon. and the dlrectlon cosine w, known from 

-. 
u=*; l-u--t’- 

do nor need to be written to the file. Approx]matei) 5X10’ 

lnclderrt eiecmons are used m the slmulauons. Given me \an - 

ance reducnon schemes used (e.g.. forced collisions. parmc!e 
spllttmg). the resuimg phase-space fries contain lntormatlon 
for several tens of mi]llons of photons (of varying weights I 

and occup} -1 GB of disk space each. To date we rrave simu- 
lated eight acceiera[ors made by Msrian. inc. Work has staned 
on accelerators made by Slemens. Inc. 

Analysis of Phase Space Files 

The tirst s[ep In the analysis IS to ‘backtrack. the ptrotons 10 
their place of creation. This IS done usm~ the equations 

A scatter plot of x, Ys, :Id,, for a stvllzed accelerator 
head IS snown In Figure 2. This step m the phase-sp~ce anal)- 

6 MeV energy components 
al 
u 1 
c: 
a I I 

‘lo-l ~ 
I 

= F.F ~ ) 

Radius (cm) 

Flgwe J Tne Rucncc at tic patient plane compnscs cnnmbwom tmm the 

tzget. the on+ coil Irnmor, and the R.wtenlnp filter The lq?cl I, the malt,! 

source 01 OK energy rexmnp Ihe pwcnl 

I We hme since added th!s capab]htv 10 MCNP. along with o numkr of other 

dlagnost]cs wtwh arc not covered here 

260 



0.07 

0.06- 

i 

0.05- 
I 

~ 0.04 - 

:0.03- 
0.02- 

0.01 ! 
o 

Target 1 o.lo-~ Target 

0.08- Ij 

~ 0.06 
n 
0.04 

0.02 

0 
23456 0123456 

Energy (MeV) 
o 

Energy (MeV) 

0.10 0.07 — 

I 
23456 

0.06- 

0.05- 
g 0.04- 

n 0.03- 
0.02- [ 

0.08 

~ 0.06 

n 0.04 

0.02 

1 0.01- 
0’ 
0 

rt 
‘0123456 

Energy (MeV) 
1 

Energy (MeV) 

0.14 

0.12 Tn Flattener O.10JL Flattener 

~ 0.08 

~ o.06 

0.04 

0.02 

n 

~0.08\llll 

‘;L 
0123456 

Energy (MeV) 
“0123456 

Energy (MeV) 

Fl:ure 5 lle pnoton enemy d!stnouuons van strongly with me PICCC of’ hard. 

ware !n wh!:h me> are created Photons mom the [vet have ener~v?s ranqng 

[rum me energk o! the Imuw elecrrons down to low bul not autte zcru, encr~> 

Tnl% I? :onsls!em w!th tne Han.en]n~ filwr’s removal of rhe kwer ent?rg} cnmnn: 

Tn* energ~ d)slnmmon rrom tnc pnm~ co)hmmor reflects o.mh ml. nlkmn; 

rromss (on the IOU energ> sldc) and the iact lhal the plmtons arc Common s<3:. 
wed rnrougn a non-neellelbie angle (thus ti”ecun! {he hl:h energ> s)dt I Tn: 

vno{on assmouuon mom [he flartenm~ Iiher reflects Inxh the lack of Io*-cncrg> 

ti]wnng as well u the poss]bihty tor small angie scanenng {and consecpenti! 

il[tle encrg> 10s51 

phcrlrms Rather. [hc prima~ colltmamr appem 10 bc more 01 
0 ‘ring’ s{wrce The M[emng filler IS aiso J source 01 pho[on> 
L“nllke Itw pnma~ collimator. however. the fia[[enln$ hl[er is 
much more un]torml) “filied’ 

We nex: analy~< the fiuenw dlwnhu(lon~ aI [he pmtem 

plww Tm.. IS snow In Figure 4 [or ~n iiccelera[or operating al 

6 $leV We see tha~ most o] the energy comes d!rectly Irom the 
mrge[. u ]th conmtmtlon. at the several percen[ level lrom [hc 

t%ttlenlng niter and the pnma~ co]l]malor 

Energy Distribution 

we show In Figure 5 {he Dholon energy dlsrnbu~lrm< trom 

the various components ar [he center o! the paiient plane. The 

pnoton energ clls[nttution. van s[rongi} w]th [he piece of 

hardware In wnlch tne} am crea[ed Pho[ons trom the [arge[ 

sIs serves IWO purposes — the hrst bang practical. the second 

betng conceptual. First. If IS a useful check on the input deck. 
s]nce the Iocat]ons of the photon creanons should correlate 
uwh the phvslcal structure of the accelerator head. Second. II 

gives us a feel for how each poruon of the hardware conmb - 
utes to the output of the machme, For the exampie shown In 
Flcures 2 and 3. we see that photons ongnat]ng from the 

targel come from a well defined spoI. Photons commg from 

the primary collimator are fewer tn number. and they tend 10 

come irom the upper edge of the collimator. Thus. the inner 
surrace of the pnmag co[hmator IS no[ a uniform source of 

hate eneryes rang]ng trom [he energy of thr Inl[tal ]nclden[ 

—— . . . . 
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Ftgure - &ich subsource Illununa!es a hffcrem amount of [he pauem SW. Figure 8 The eftecwe source dMnbutlon>. lnoi.!n~ upwards tmm the pa(!en! 

tam T’ms area 1s a luncuon both 0! [he Source ‘size as well M IIS d!smnce t< plane towards the bremss;rtilung target Thc pnoton, CWIU”; Ir,,m (IN KUgCI 

me Iaw, The largc[ source IS most sharply denned Thc other sources rllum)- aPW~ t@ cO~ frOm a ~ mm alamelcr disk mox phomns com!n~ tr,,m the pr,. 
n3te luger arem 01 me pallcn: The dashed hnes !n tic lower rvo panels dc”o{e m~ colhm ator apmar m come from a nn~-l)ke 50UTW I comp3rc UItk 

a sul!abbe area ior hlorm Carlo samphng Figure ? I, and those photons conung tmm the flxtcntnc hiler apncm m come 

lr0171 a broad. almost Gaussmn-hke source NOIe the d!ficrcn[ LIIXTWIC.r$ 01 lht 

Various sources 
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ele::ro r:. crown [e Lou. W: T~). I\ COr- 0,3: GU:I? z2r. er.:r: 

>Isfer,: tlI:r. [n< n3tmn1n.~, n!:t: . re~,(njtil O: [n< low c: e~:rg, . 
rmo[ofi.. Tne energ alsmm[[on !ror. ICe ;TIXIP. coil Irn310- 

reflsc[s no:n ml: tilkrrr!g mow.. I cm me lo~t enws} sla,e 3nc 

[ne racr [na~ me tmomn.. L-e Common >ca[~ered tnrougn 3 noc - 

n?cl]cl~te angle (mu: se[tin; m unce: rmnc or me mQP 

energ} sloe The pnoton alsmcmuon rrom me tianemrrg n!~er 

retkcts uotrr the lack of io~-enersz> tiitenng I since mi~ I> me 
las[ piece of narctware transited b) me pno[onsl as weii 3s tnt 
po~jlbll}l~ [or smali-angle scattering I mm Conseauentli IIttle 
energ 10ss) 01 me hlgn energ! pnoton~ coming Irom me tar- 

.Qe: 

Tne energ} alsmrm[lon> snown In Figure 5 cnany as we 

move m larger alst3nces Irom me cemrai axis o: me Deam, 

ThI, IS sncm’n In Figure 6 We nnd tnst the uls[rltyu[lotls SMW 

an Increase In the propomon of irw energ! I nere. -} Nlc-\’ I 
pno[on: with Increasing alstance trom the centrai ax]j. whtcn 
correlates with the aecrease In the thlc~ness ot the tlarremng 
Filter traversed by tnese pnotons 

Energy Fluence at Patient 

The fluence pat[ems at the pauent from each of the sutl- 
sources ror a 10 cm x 10 cm tield (tha[ 13. wnere the laws m 
Fl~ure ] hate been moved so [ha[ [he Dho[onj from [n~ Iar:e[ 
illuminate a 10 cm x I(J cm square) are snown in Fl~qre 7 We 
see that. as expected. the targe[ photons illumlna[e me desired 
are~. Photons rrom the pnman collimator ilmm)nale a larger 
area of the pauen:. This IS expectec. since [he ‘source” of these 
pmmcuiar pno[ons IS both closer to the !aws and Imger 
I Fl~ure 2 I. This trend Decomes even more pronounced ior the 
pho[ons from tne flattemng filter. indeed. these photons illum)- 
na:e a silghtly rectangular are~. a result of the difierent aspec[ 
ra[lo of the x- and ~-jaw pairs. +.nalysls lndlcates tha:. al this 
neld size. 93Tc of the pho!on energ) reactnng !ne panenr 

_I~ trom the prlrnd~ colilmalor. and comes irom the targe:. - c 
<rc Irom [he flattening filter 

While the area Of ll]urnlna[lon at a glyen field SIZ~ IS dlfi”er- 
en[ for each subsource. lt IS Irue. on the otner hand. tnat each 
subsource will IIlumlnate a specinc area of the patlen! ror a 

Speclric jaw semng The areas of illum[natlon Shoufi In 

Figure - can be studted ror other jau semng> and the resulls 

tabulated for later use. 

Photon Origin Distribution 

The subsources. m addluon to illumtnatlng dlfferen[ size 
areas of [he patient. also have markedly rhfierent source dlstn - 
butlons. Figure & shows the radial chstnbuuon of the photon 
energ> for each subsource when the photons are bacturacked 
to planes at posluons corresponding to the Iocatlons shown In 

Figure 2. The “target’ pho[ons source IS a flat disk. [he “pr- 

imary collimator” photons come irom a nng-llke source. and 
the ‘flattemng nlter’ photons come from a broad. almos[ Gaus- 
sian source. W“hile these dismbuuons are quite dlfrerent. each 
IS well described by a radial dls[nbut]on and an angular ~l~tn- 

buuon. 

263 

Step ! 

Step 2 

Step 3: 

Step 4. 

Decide which suosource u ill be samoied 

For rnls subsource mm neld size. aetermlrre Ii-w .r 

and-v IImlts oi iliumlnauon (FIsyre 7 ). Gener~[~ ~ 
random. unitormi> aismrimtec f-r.} ~ coorain. nt 
wlthln this area. 

Gl~en dms (x,-v) patr. calculate r. .A~IusI the wel~n[ 

ot the parwcle m accoun[ tor [he SIOU i} -~arylng 
fluence iFgure 4) 01 this subsource Sam~lc the 

parncle”s energ} irom the energy dlstnmmon ior 
[his subsource. at this r (Flgtres 5 and 6!, 

Given the subsource being sampled. sample an 

lmuai position for the photon im cnooslng a stan - 
lng radius and ande trom the appropnam dmlbu- 

uon (Figure 8 I 

At this prom. we have the parncle’s energ> and weight 

(Steps 2 and 3). as well as two points dennlng IIS tralecto~ 
(Steps 3 and 4). The tra-tec(ory-denrung points denne the pam- 
cle’s dlrectlon cosines. and we have al I the reaulreci phase- 
space Intormatlon needed to s~art traclung this pm-rIcle m the 
pauerr[. Samplmg from the various dls[nbut]ons IS performed 

using the ahas sampllng method [4] “Srep 2’ atxne keep> the 
efnclency of the overall algorrthm high. stncc uc [end [o pick 
only mose photons tha[ WI1l hl[ tne patwn: 

Conclusion 

We have g~ven an overview of [hc appro~ches used within 

the PEREGRINE pro!ect m model medical accclera[ors We 

have aescnbed tne vanatlons In the energ} and anguiw dlstn - 

buuons o! the radlatlon produced In or scxtered ny vanou. 
ponions of the accelerator We hate outllnml our tm~cedure. 

for samplln~ these distributions 10 yteld m alym[hm tha[ I> 
both efnclenl and rapid. 
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The technique for solving 3D hydrodynamics problems 
on irregular Lagrangian grids 

\“.li.lvlotiokho\. l’.l’.RasskazovL P. A. Rasskazo\. A. X. Simporerkc 
Russian Federal Nuclear Cemer- Al!-Russian Scientific Research Cenw: 

of Experimenr.al Physics (l%TEF). %ro~ 

Introduction 
The necessi~’ in a mathematical technique development aliowin~ to computs a 

material motion in 3D space is related to the fact that in the majoriq of pracuca]ij 
si-gn.ificant situa~ions the phenomena geometry is three-dimensional. 

In practice. there are a great number of probiems when domains of soiu~ions 
originall~ have a compiex strucrure and it is ve~ difficult to construc~ a reguiiz -grid. 

And construction of a regdar -grid Viti a presel prope~ e~en within domains of 
simple structure may be practically impossible. The use of an irre-alar -grid will 
aliow to avoid these difi’culties. 

In problems with suong deformations closely located gas particles hate a trend 
to become v-iaely separated liom each other. In these cases flow- simulation on re-guk.r 
Lagra.rgian g-r-ids appears to be impossible. In mathematical models operating in 
Euierian coordinates which do not use meu-ic closeness the determination of Ja-ious 
material boundaries is a quite difflcuh task thou-h in many cases it becomes 
si-gn.ificant. 

The proposed technique uses La-grangian representation of gas d>mamics 
equations and the difference computational -grid connected to a material and moving 
aiong \\-ith it. 

The space filling up by figues as computational grid cells without folds and 
gaps is performed in irregular ~va! with the use of Dirichle~-Vorono> con~ex 

polyhedrons at the initial time of integration. 
The La:rargian technique is an extremely powerful technique for sol~in: 

hydrodynamics problems. But its disadvantage is that -g-id distonion takes place 

during the process of computation of flo~~s with strong material deformations and 
this. in its turn. leads to a time step value decrease and in some cases to the 

impossibili~ of further compwations. 
To eliminate the Lagrangian -grid computational distoflions du.rin: the 

numerical experiment. the \vays of presening three-edged angles to be convex and 
local grid reconstruction b]’ cutting some cells or pasting together NO nei~hborin~ 

cells are used. 
The interest in unstructured and irregular grids may be also explained by the 

fact that the} may be much easier reconstructed in different \vays and. additional}. 
allow to localize grid areas which are to be reconstructed more simpl}. 

Under local reconstruction all integral characteristics of the problem remain 
and this fact positively affects the computation accuracj. 

Topological grid swucture is determined b: connections of its nodes. Each 
node of a triangular grid has stnctl} four neighbors. This grid feature is the most 
impomnt for the det’elopment of the local grid reconstruction technique. 

Assume that the volume of cells surrounding cells beirg reconsuucted is not 
changed during operations of cell cutting and pasting together. This condition is usefil 
both for recomputation of hydrodjmamic grid values and satisfaction of the 
requirement of con~rexi~ of all cells after the .tid reconstruction completion. 

265 



Cells cutting and pasting together 
W“niie cumng a ceil J. a piarw \vhich cuts a cell in rum new’ o~es sna!: b: 

s?eciilec!. .4fw points of this plane intersection with a ceil edges bait been fouini m,i 
new connections berween celis and nodes have been ae~ermmed. we ohm 1J% nev, 
celis J1 and Jz (see Fi:.1), 

of the 

Fig. 1. Example of cutting a polyhedral cell by a plane. 

Following the idea of presemation of cell volumes while executing operations 
local grid reconstruction we need to relocate cell”s nodes being connected to 

nodes of an edge occurring as a result of cell cuttirg . so bat \ve could restore cell 
\olumes. 

The following dimensionless values are selected to estimate the -@d starus: 
RI is a ratio be~een a t-jTical cell size and a ienkgth of its maximal diagonal: 
Rz is a ratio between a ~-pical cell size and an average value of this parameter 

o~er the \vhole domain: 

R; is a ratio bet~veen a cell volume and an a~era:e \oiume value of cells 

surrounding it.; 

& is a number of this cell edges. 
A ~Tical cell size may be determined by the formula: 

~= /> \vhere 1’ is a cell volume. d~ is a ma..imai diagonal Ien=ti. As experience 
}d~ ‘ 

sho~ved. such approach to a ~-pical cell size computation refitcts in the best ~va} 

specific features of polyhedral cells. 
A certain cell cutting is performed depending on talues of estimated RI join 

parameters. 

Each cell cutting is performed completely b) the plane normal to linear section 
~~hich connects centers of maximall} distant from each other edges and dividing this 

section in two. 
The correct choice of a neighbor is a significan~ enough factor for combining a 

cell ~vith one of its neighbors. The choice of a neighbor ~~as performed according to 

the following criteria: 

- a cell volume should be minimal: 

- surface area of an edge separating cells being pasted should be maximal: 
- maximal diagonal of a cell obtained as a result of pasting should be minimal. 
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Grid correction using eiasnc impact. 

poslu~’e value. 
.% a result of motion of all polyhedron’s venices at the next (n-l) tires skD of 

inm=~a~ion the volume vaiue may charge its si-gn. Ttis means that there is a ~ime 
point := , ~v.nfm this volume value eauds zero. V(t*) = O. This is possible, Ivb.en foIw 
-tid nodes beionging to one three-eci:ed argie lie in the same plane. 

To de:mnine tis time point. Write the expression of a tnan:ukc- p>n.mid 
Yolurm in the form of cubic poljmomial by introducing an inte=wa~ion time cominui~ 
pmuntxr. Cubic equation within the inte-gration time range has an odd number o-f 

roots: either one or three and only one positive. 
To preseme a three-edged ang~e convexi~, introduce an elastic impact on a 

ueigghtless rotating plane. 

Impact is a phenomenon of finite charge of solid velocities within a ve~ snor 
time range. Tnerew-ith: if impulsive forces are potential, then this impact is calied 

quite elas~ic one. The set of masses grouped in @d nodes we consider solids of finite 
mass. 

Use consemation laws for a closed system of points: 

● momentum conservation law, 

● kinetic ener-g consemation Iatv; 

● rotational moment consemation la~v. 
Note that a closed system is a sjmm of bodies \vhen no one of them is affected b) 

exmml forces. 
Tine given system of equations includes seven equations with ~elve 

unk.no~~ns. For unique determination of netv veloci~ values- subordinate to these 

constmalion la~vs, add the condition of elastic impacl on a rigid tveighdess tvall. In 

this case consenation of veloci~ tangent components on this \vall is pa-formed and 

modification of only normal components of velocities in relation to this wall is 

considered. 

Using some not difhcult transformations we obtain this system solution. 
From the analysis of formuias describing the system solution one may see tha[ 

the use of elastic impact resulted in the fact that a volume \alue of a three-edged 

prism has changed its sing for an opposite afier the impact of all its vertices on the 
plane t~here they were located at this moment. I.e. in this case the corresponding: 

three-edged angle w-ill be con~’ex. 

Using the procedure (similar to the procedure for 2D case) of sequential look 
through aIl vertices of all polyhedrons and composing a list of numbers of those three- 
ed:ed angles \vhich are to be comected sequentially using elastic impact, well obtain 

a set of convex polyhedrons by the end of one time step integration. 

267 



LY U-K rwx: WA the ma~ena~ mouoc i~x corqmed using SD LWZIS:X 
h>aroci>m.rnlcs pro=mam. Cubic region was fliieti UD by the icieai ga5 imc resmc[ed P} 
ngi~ ~a]i~. .J.. comca~ su”Dreglon kv~ seie~~e~ inside fi~ r~glo~ 111~, m,~ cone ~X:: 

being paraliel 1002 a~is. of opmin~ angle eqau] to z.’I2 and ~11~ a ve~cx in me C’JC: 

sic: iaymg in Ox] pime. In the comcal subregion fliied up with the same g~~ tit 
rot.zmonal flow was given al Kk ini~ia! Iime being aeilrxd “D: velocities in e~cq’ porn: 
according to the following formulas: 

U.=y-}”h. 
L,=xL -x. 
~z=o 

where IXk. yh. 0) are coordinates of the cone vertex. 
During the process of in~olving a unperturbed pan of the region in this motion 

strorg material deformation arose near the conical surface that caused the 
computational -grid dis~ortion. 

The computation of the given task was pefi”otmed with local -grid 
reconstructions. 

Projections of the task defotmed region are given below. 
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Projection of the task deformed region. 
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Vortex conical flo~v field inside the cube. 

Conical surface, 
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A THREE DIhIEN-SIOfi-AL FIN-ITE ELEhlE>-’T FORN1UL.4TIO>- 
FOR THERNIOITISCOELASTIC ORTHOTROPIC NIEDIA 

ABSTRACT 

.A numerical algorithm for the efficient solution of the uncoupled quasistatic initial ibounciar, 
value problem involving orthotropic linear viscoeiastic media undergoing therms! and /or 
nlecilanical deformation is briefl}’ outlined. 

Introduction: This discussion is concerned with the development of a numerical aigc~ 
rithm for the solution of the uncoupled quasistatic initial/boundary value problem involting 
orthotropic linear viscoelastic media undergoing thermal and,lox meckmical defurrna~ioll. 
The algorithm has been incorporated into a three dimensional FE program written by the 
author. This code is a general purpose tool capable of predicting the response of a mathe- 
matical domain to complex loading/thermal histories. Phenomena such as creep. relaxation. 
and creep-and-recover!- can all be predicted using this program. This discussion is based in 
large part on the work previousl~ presented in Zocher. Gro\’es. and Allen. 1 Related work m~~ 
be found in Lin and Hwan~.z3 Lin and }-i.4 Hilton and }-i.’ }“i.6 and Kennedy and JYang.’ 

In the foliowing. a brief statement of the problem of interest is provided. This is followed 
b): a discussion of the conversion through incrementalization of the thermoviscoelastic COIE 
st ]t ut ive equations into a form suitable for im~lementation in a finite element forrnulat ion. 
>-exi the finite eiement formulation \vhich is based on these incrementalized coll~tltu[ile 
equations is presented. 

Problem statement: The problem to be solved. or more precisely-. the class of problems for 
~~bich a method of solution is presented. ma~. be referred to as the linear three-dimensional 
quasistatic orthotropic uncoupled thermoviscoelastic initial /boundar~ value problem. The 
governing field equations are equilibrium. 

‘]i,J A P./-a = cl (1) 

strain-displacement. 

~ [71t,l + IIj,, ) c,] = ~ (2) 
. 

and constitution. 

tvith constraints imposed on the solution b~. the following boundar~’ and initial conditions: 
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In the above. .f, is the bed}” force. T, IS the surface traction. nj is the unii outer normal 01, 
do ~ the bounaar~ of the domain ~]. and P is the mass densit~.. The terms Ctjk[ and 3,, rel* 
resent the fourth order tensor of orthotropic relaxation moduli reiating stress to mechanical 
s~rain. and the second order tensor of relaxation mociuli reiating stress to thermal strai:.. 
respective}. The symbol 6 is used to represent the difference between the current tcmpcra- 
t ure and a st res>-free reference temperature. T’he reader will recognize from the form of t il~ 
constitutive relationship that we have assumed the material to ‘be possibl~ nonhomogeneous. 
nonaging. orthotropic. and thermorheologicall~ simple. The symbol $ in (3 ) is the reduced 
time of the time-temperature superposition principle. 

Incrementalization of the Constitutive Equations: To accomplish the aforementioned 
increment alization. we begin by subdividing the time line (reduced time) into discrete inter- 
vals and assume that the state of stress is known at the begining of a time step. lye then 
seek the state of stress at the end of a time step. or equivalently duii. In accomplishing 
the incrementalization. four approximations and one assumption are ma-de. The nat,ure each 
of the approximations is the same. that the variation in a given quantity (such as strain or 
temperature ) across a time step is linear. The assumption is that the relaxation moduli can 
be represented in the form of l~iechert thermomechanical analogs ( Dirichlet-Prony series ). 

The result is that the constitutive equation. given in (3). is converted into an incremental 
form given b} 

~~:j = cijk[’~<kl – filj’~e + AU:jR (6) 

where Ctjk[f, 3,1’. ~tki. and Ae are given by: 

and ~~tj R is given b>.: 

(no sum on i.j) 

\vhere 
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‘1’nis increments! form of tDe constituti~’e eauatlons is IYe)j suited to imDiemen:atio:. 1:; :. 
hnite eiemen: program:. 

Finite Element Formulation: l-sing the lncrementalization given in ( G I in the method o: 
~vei~hted residuals. one arrives lrl a straight forv;ard manner to a s~’stem of aige~raic equat iorl> 

,, . 

01” the form: 
[keji~ue- = [.f~j - [.f;j - [J;j - [~1~ - K: (7 . . 

(s, 

[L-cj is referred to as the element stiffness matrix. [~~], [~~]. [~~]. [~~]. and [~$]. are contributlon~ 
to the element load vector due to bed}” forces. surface tract ]ons. stresses at the start 01” 
the time step. change of stresses during the time step. and thermal efiects. respect ivell. 
Summation of the contributions from ali elements results in a simpie set of aigebraic equations 
of the form: 

[A-] {Au] = {F} (9) 

Conclusions .4 three-dimensional finite element formulation has been developed and in- 
corporated into a three-dimensional finite element code. This development provides the 
analyst with a versatile too} with which he can easily predict the response of an orthotropic 
bod~; (isotropic and transversely-isotropic bodies are considered subsets ) to a \vide range of 
loading/temperature histories. Demonstrative example problem solutions can be found in 
reference 1. 
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3D P.ARALLEL PROGROI FOR NU51ERIC.AL SOLCTIO> 

OF G.4S DYX.&%IICS PROBLE31S J1’ITH HE.4T CONDUCTIO\ 

OX DISTRIBCTED-NIE31 ORY C031PCTERS. 

RESULTS OF COhlPCT.4TIOXS ON MP-3. hIEIKO CS-2 

.&ND SP2 CORIPUTERS. 

Sofrono\ I. D.. Voronin B. L.. Bumel 0.1.. Bykov .A.K.. 

}“eroi’ee~ PAL. SkqTnik S.1. 

(VNDEF) 

D.!iielsm. Jr.. M. Uyemura. R.Evans. S. Brandon. 

N1.Nemanic. C. Okuda 

(LLhl) 

The goal of this effon is development of a 3D parallel pro-yam for numerical soltnion of gas 

d!manucs problems ~~ith heat conduction on disrrikmed-memory computer syslems satisfying 

K& conaition of the numencai result independency on k number of processors involved. 

Tne proegmn was developed on the eight-processor compuler system NP-3 developed by 

\RTEF and was adapted by joint dYons of \%WEF and La\\_rence Livenrtore National 

Laborato~ (LLhl) employees to the massively parallel compuler Meiko CS-2 located in 

LLSL. A large series of numerical exphnents U= conducted on tie JMeiko CS-2 computer 

uiti a various number of processors. up to 256. and parallelizmion eiilcienc) estimations 

ti:ptniing on the number of the processors and other parameters vere mad:. 

IFiTRODUCTION 

VNIIEF Mathematical Division has gained wide experience of parallel compila- 

tions. Parallel computations of 2D problems were conducted on multipie computer 

complexes BESM-4. BESM-6 and Elbrus- 1 ‘I .2’. Later on parallel application programs 

were developed on the multiprocessor computer Elbt-us-2, i.e. shared main memo~ 

computer /7!. Recently, with the advent of the ei~ght-processor distributed-memory 

computer NW-3 /8/ the problem of parallel program de~’elopment for such computers has 

become urgent. 

The problem of program development for massively parallel distributed-memo~ 

computers requires development of efficient parallelization algorithms and methods taking 
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lnIo consideration the speciiiciv of these computers, >ome 01 tie numer:cai S:n:mes 

if iI:ck hzte siIo\iec! themsei~’es 10 aa~.antage apDear to ‘be wwl] Daraiiei:zabie. others :or, - 

EI]n a non-uara]ieiizabie D2F.. 

SO m some cases achievement of a hi:~ paralleiization performance is possibi: 

oni) mbsn the numerical methods ~ed for the probiem solution have ‘been consiacrzbi\ 

det’eloued. 

2. SOLUTION METHOD 

Recenti} we have pursued the de~relopment of the parallel program based on the 

Eulerian-Lagrangian technique for numerical solution of 3D non-stationa~ gas dJmamics 

problems taking into account heat conduction /3,4/. 

Tne heat conducting medium motion is described with the differential equation 

s)wm of :as d}mamics taking into account heat conduction ei~er iII tie s@e- or multi- 

componem forrnula~ion. 

Implicit approximations combined with the direction-splitting method 15/ lead 

both in the case of the heat conduction equation and in the case of gas dynamics equa- 

tions to the set of finite-difference equations of the form: 

A , an-l =Ban, 

Ti— desired grid function, A — three-diagonal matrix. 

The three-diagonal matrix equation sj’stem is solved with the s~veep method ‘6,’. 

3. PAR4LLELLL,4TION METHODS 

Tine ckpelopment oftech.niques and programs for compuIing complex 2D and then 

3D problems on available inte-grated computers has been always paid much attention to 

at VN~F Mathematical Division. 

At each of these computer development phases the question of adequate problem 

representation in a form accessible for parallel processing was sol~’ed in its ovm way. 

The inter-machine computer systems were used for large-block parallelization 

throu-gh problem geometry segmentation into fia-gnents each of which was computed in 

the parallel mode on its owm computer, while the fra-gnent interaction was throu.fi the 

bounc@ condition communication between computers involved in the computer system. 
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C’r. K.n: ~ 
--, .< mul;:mj: :oIHDW:: - 

,, 
.OTI~:?\ EiDX5-_ tn~ Darallellzatlon a!gorllilnl~ Do::: \J ::, 

. . . 
S[P.::C arj~ ~)~,am;: Da Ia.ll. CW. = ~ c: uro:tssc: ioa, ti \\ere 1!n9icmenteci. in ‘Dotn the ~aS:S :E: 

t:nlexep com~utation scneme lvas a seauen:iai comDutalion of al! the three sr)a~ial ci:rt:- 

I]ons, Tit computation of each spatiai direcIion \vas a se~ of “one-a im,cnsiona!’ urobicm. s 

.+t ~ne sta~ic balancing the set of the “one-dimensional” probiems \vas spli~ oj’er pro~e~so~s 

~ the uro’nlem decomposition by paralieiepipeds) and each computer com.putec! a iixec! s:: 

of comgumional grid columns. 

.41 the ci)mamic baizuxirg each processor computed a %ee” uncomputed coiurnn a: 

a ~i~en ti~,t. 

\\”e use the probiem geome~ decomposition to arrange the massi~el~ parAle! 

computations on distributed-memory computer systems. 

N-e ha~’e developed NO basically different approaches to the massively parallel 

compu~ation arrangement.l%e fust approach uses the tirnestep reconstructable decomposi- 

t ion of the 3 D data matrix and is an extention of the parallelization algorithms for 

multi-processor snared main memory computer systems. The decomposition change con- 

sists in double or triple transposition of the 3D data matrix distributed over multi- 

pro~essor computer nodes. The second approach is based on using the 3D data matrix 

non-reconstructable \vithin the timestep. 

.41 the first approach the commutation system load per one processor increases \vith 

the increasing number of processors, at the second this load is in~tariablt. but the initial 

computational algorithms contain a non-parallelizable part. Achie\’ement of a hi~@ paral - 

leiization etilciency (close to 100% up to 100 processors) required combination of the 

computation (arithmetic operation) W%h communications (communication operation) at 

the fust arrangement approach and a considerable sweep algorithm modification at the 

second. 

The siveep formulas are recurrent. i.e. are functions of running computation in the 

fomard and backwwd directions. 

Jve considered three methods of sweep parallelization. 

The first method is using the “counter-sweep” fomulas. 

Implementation of this method provides a speedup of 2 at the sweep formuia com- 

putation which means compiete parallelization at the number of processors in the “iine” 
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eau2! 10 :. \\h:n [fit Dro:e SSOrs in W,: “iw’ number more than 2. \ve wi!l ha~”t lcsj~~ 171 

the D3r31~~ii ZaI10n efiiclenc> as eariier. 

Tht stconti method is the s~%reep pipeiinin:. 

Takxl: mto account that the computallon of each spatial ciirectlon silouid impiemen: 

the swetp formulas on a Iine set. one can begin the forward run on the follo~!in: i:n:s 

\\nen ~vaiun: for the bacinvard sweep run for a given line. Implementation of this r-m:nod 

bl-ou~Jt OU: a high parallelization efilcienc~ at the number of processors in the “ime” on 

tht oid~r of several hundreds. 

T“: third method is the s~reep paralleliza~ion proposed in the paper b~ Yanenko e: 

ai. 10. 

Tnis method implementation also showed a hi:@ paraIlelization efficiency. 

Tie de~reloped algorithms were used to make a parallel program for numerical soiu- 

tion of 3D gas ci}mamics problems with heat conduction for massively paraliei computers. 

The program was deveioped on the ei-ght-processor computer system MP-3 using the 

lvfP1 Standard for the interprocessor communication arrangement. 

The block-matrix Dp computational grids can be employed to solve probiems 

with using the iarge-biock parallelization algorithms between blocks and each block being 

dis~ributed owr processors using one of three decomposition types: lines, columns, cubes. 

Tine first decomposition type corresponds to splitting the probiem geometry by one 

spatiai direction. the second to that by two and the third to that by three spatiai directions. 

Tnt program is atmrged so, that each problem carI be computed on an arbitrary 

number of computer system processors. The computed data is independent on the number 

of the processors invoived in the probiem soiution. 

4. SETTING UP TEST PROBLEM COMPUTATIONS AND 

THEIR RESULTS 

The uest demonstration probiems of three-axes gas eliipsoid expansion into vac- 

uum and probitm of heated homogeneous cube cooling /3.4/ were taken for numerical 

experiments. 
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3. COXCLFSIONS 

.%w.iyzin: the resuits obtained. we can infer that we managed to de~’eiop efiicienl 

!mralielizauon methods and 3D parallel pro=~am aliowittg to bring out a ~’en’ hi@ sc3;- 

abiii~ (close to the theore~ic) on massi~rely parallel distributed memory computer s!”sttms 

inl’ol~ing - I 00-300 processors. 

Apparentij. further work is needed on de~’elopment both of parallelization 

rnethoas and of the parallel pro-gram itself in order to retain this scalabili~ Ie\rel on com- 

pum s!stems irn’olving thousands of processors. 

To conclude with. NO important circumstances should be mentioned relating to 

aelelopmemt of programs for massively parallel computers. Tne first is t-he data 

input output problems. We took and implemented the principie of distributed formation of 

the initia! data and output data files of a problem. This allowed to a~’oid bottlenecks 

reiating to inDuL output. especially at the parallel pro-gram debugging and testin~ phase 

where it is necessa~ to make a -great number of reiatit’ely short computer runs. The second 

is tha~ parallel pro-gram debuggin: and quali~ study requires special tooIki~: p3rallt I 

program debu~szers and profilers. 
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Time Dependent View Factor Methods 

Ronald C. Kirkpatrick 

Los Aiamos National Laboratoq 

Abstract : View factors have been used for treating radiation transport between 
opaque sufl-aces bounding a transparent medium for several decades. Hou’e\’er. m 
recent years they have been apphed to problems invoivmg intense bursts of 
radiation m enclosed volumes such as in the laser fusion hohiraums. in these 
problems, severai aspects require treatment of ume dependence. 

View Factors 

View factors are commonly used to compute the transpott of radiation through a vacuum 
between sets of opaque surfaces. A view factor is simply, a coupling coefficient that gives 
the fraction of radlauon emitted from one surface that is intercepted by another, assurmng 
thar the emission is Isotropic [1]: 

C*2 = ~~ dl,-2 cOS CZI ~OS a. dA, dA. , . 

VF,2 =C,2/ Al, 

where d]. is the distance between the surfaces, a is the angle of incidence measured from 
the norm~l to the surface. and A is the surface area. For simpie problems, conservation can 
be insured down to round-off accuracy, but the accuracy of the view factors depends on the 
method used for computing them. some of which are restrictive. Here we are concerned 
not with the methods for computation of the view factors, but with methods for treating 
ume dependence in view factor codes. 

In the simplest view factor codes the geometry is fixed. specified albedos (the fraction of 
incident radiation that is diffusely reflected or emitted) are used to describe the surface 
properties, and the times of fli$ht between the surfaces are ie~ored. However, for many 
physical problems these simphfications are unsatisfactory. First. the surfaces may have 
amsotropic propeflies. Second. the surface properties may be time dependent or depend on 
the condition of the surface. which may change with time. For some problems (e.g., some 
radiation symmetry studies) it may not be necessary to treat the time dependence of the 
surface properties, but in most cases changing surface properties are very important. Third. 
the geometry can change significantly when the surfaces move (e.g.. in response to rapid 
heating), and fourth, for some problems (e.g., illumination of an interstellar cloud by a 
supernova) the radiation may be rapidly varying on a time scale shorter than the time of 
flight between surfaces. Finally, many problems involve a tenuous medium between the 
surfaces [2]. 

For the case of anisotropic surfaces properties it is possible to use angular bins, but it is 
often more convenient to use angular moments of view factors: 

- = ~~ d,,-’ cosn” czl cos al dA1 dA2 . c ‘,, 

For other problems, more detailed treatment of time changing properties of the surfaces 
must be considered. For example an opaque surface may absorb and re-emit radiation. If 
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that surface is opucally thick and has uniform temperamre tie ra.dla[ion will ~ pianc~m” 
but t.hs M seldom the case for a dynanuc probiem. It CW, be shoufn that for pian~r 
geometg. the first anguiar moment (n= 1 J of the view ractor 1s sufticlent to treat tne 
amsotropy due to a sxmple ~adient m the source function: 

where u = cos cx , I is the radiation intensity, T is the optical depth. and is the source 
funcuon. This has the formal solution: 

So that if S = SO+ S’~, then 

I ~ul = - \t ( SO + S’r ) e-vw d~/p 

which leads to 

I out =So+s’cosa. 

(#<o), 

Thus, the first moment of the view factor is sufilcient for treating a constant gradient of the 
source function in an opaque surface. Absorbing surfaces exhibit limb brightening, which 
is analogous to limb darkening seen for emitting surfaces such as the sun. This can lead to 
radiation energy flowing in the direction opposite that which would be dictated by energy 
density gradients computed in a diffusion code, which emphasizes the need for matchmg 
the computational technique to the physical problem. 

There are some cases in which the time of flight becomes important. and also some work 
has been done on including the effect of a (more or less complex) medium between the 
surfaces [2]. Henceforth, we confine our discussion to time dependent surface properties 
and handling the effects of time of flight. We will discuss some specific models, but there 
are many special applications of view factor codes that require other approaches. We only 
suggest ways to handle changing geometry, since we have never Implemented this 
capability. 

Models for Absorbing/Re-emitting Surfaces 

While there are many ways to model changing surface properties, one of practical interest 
for inertial confinement fusion (ICF) is the use of non-linear heat diffusion [3]. In ICF 
hohlraum problems [4], soft X-ray radiation is absorbed by the surface which (as it heats 
up) emits soft X-ray radiation with a different spectrum. until it comes Into equilibrium 
with the other surfaces that couple with it. Once equilibrium is obtained (if ever), the 
emission comes into balance with the incident radiation, so the effective albedo is unity. 
Otherwise, it differs from unity in a complex way that depends on both the amount and rate 
of the incident radiation. 

There are several options for modeling these types of surfaces. One that has received only 
a little attention is the uniform flux approximation [5]. It is based on the observation that in 
the similarity solution for the non-linear heat diffusion equation with a power law opacity, 
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treated. Tnus effects such as hmb darkening [as 1s the case for the sun J and hmb 
imgntenmg can t)e mciuded. 

Time of Flight 

Only a littie work has been done on including the time of fright effects in view factor codes 
This is because for most practical problems it is no~ important. However, for the case of 
sudden illurn.mation of an interstellar cioud by a supernova. or some similar physics! 
problem. the distant observer sees the cloud first illuminated and then the ligh~ scattered 
from the cloud reaching the distributed parts of the cloud. Analytic solutions for the case of 
a spherical sheIl surrounding a central pulsed source have obtained [7.8]. If the scattenn~ 
has a high effective albedo, then multipie brightenmgs may occur. Simiiar behavior can 
occur in fast diagnostics for ICF. etc.. 

One successful method for treating time of flight uses temporal bins associated with the 
destination surface. Here, the energy emitted by each surface during a time step is 
apportioned to the proper destination surface in accord with the view factor for each pair. 
and then the po~ion is divided between two temporal bins for the destination surface based 
on the centroid time of flight of flight between the pair. Between each time step, the 
energies in all the bins are shifted, so that after several (constant) time steps the energy 
emitted earlier amives at the destination surface. Numerical results compare favorably with 
the analytic results of Hoffman [7] and Zahrt [8]. An attempt to improve on this approach 
by using a time of flight weighted by the contribution to the view factor gave nonsensical 
results. For the case of a cylindrical pipe the radiation using the weighted times of flight 
can travel at super-lurninal speeds to the other end. Only in the case of very few surfaces 
does the use of weighted times of flight seem to improve the relevant conservation 
propern: the sum of the products of the distances between surface pairs and the view 

factors should be 4n times the volume. 

The above method is restrictive, requiring a constant time step. In addition, no distinction 
is made between the various source surfaces, so information on the angle of incidence for 
the radiation arriving at the destination surface is lost. Retention of this information would 
require a set of temporal bins for each pair of surfaces. Memory requirements would then 
limit the total number of surfaces that could be used in the problem. but the faithfulness to 
the physics would be greatly improved. However, another way to retain the angular 
information with less expense for memory is to use an=alar moments of view factors. 
using a destination based set of temporal bins for each moment included. To my 
knowledge. this has not been done. 

Changing Geometries 

For most problems that view factor methods have traditionally been applied to, the 
geometry is fixed. This means that the view factors can be computed once and used o~’er 
and over again to solve the problem. However, there are some problems that are most 
efficiently handled by view factor methods which do have changing geometries during the 
course of the solution. One crude approach would be to simply recompute the view factors 
at intervals. but since the expense for computing the view factors for N surfaces goes as N: 
at best, and as h’~ for cases with a great deal of partial blockage (i.e., shadowing), ti-us 
could be very expensive for complex problems requiring a large number of surfaces. 

However, there is some hope for handling problems involving changing geometries. First, 
it should be noted that for surfaces with no blockage the straight-forward double area] 
integral for computing view factors can be transformed into a double line integral [9]. This 
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the flux deep mto the sun-ace IS nearly uniform up to he head of the diffusion front. where 
it dmmmsnes rapidly to zero. If one neglects the radiation ener=~ denslry (aT) reiauve to 
internal energy of the material. an mte+gral relauon connects the flux history with the aepth 

of penetration for a power law opaci~ dependence on temperature (K = K, e ‘ I Eln ) can be 
found: 

., 

E(t) = j c,T\x,tj dx = (n+4) c, xO(t) TO(t)/ (n+5j, 

xo(t) TO(t) = ~; 2K j TOWS dt , 

where x is the depth (in grn/cm2), K = 4ac(n+5) / (n+fl)z c, KI (3, ” , TO(t) is the bound~ 
temperature, and xO(t) is the penetration depth. This ieads to 

f(t) = K TO”+5 / ~ j TOB+5 dt , 

but since f(t) = F(t) -0 T,’(t) , 

F(t) = c TO’ + K TO”+5 / ~ j TO”+5 dt . 

Inversion of the results from the last equation provides TO( F(t), t ) . Use of the uniform 
flux approximation is restricted to a constant or continually increasing temperature at the 
surface, which this is typically the case for ICF, because it fails badly when the boundary 
temperature starts to decrease. It is also possible to get a solution for the case of an 
arbitrary dependence of opacity on temperature. 

Another option is to do a radiation hydrodynamics calculation for each surface and couple 
them to each other through the view factors. However, a simplistic implementation of this 
approach may compromise some important physics. Some years ago a modified radiation 
diffusion treatment was developed to allow the in-depth absorption of radiation forma hot 
source, yet utilize efficient radiation diffusion in the deeper zones in a 1-D problem [6]. 
Starting with the formal solution 

The intensity is split into direct and diffusion parts: I = I*, + I&~f , where I&, = ~~, e“” B , 
l,n, is the intensity of the radiation incident on the surface. and I&~~ is the contribution (O the 

mtensit~ of the radiation that due to the source function inside the opaque surface. 
Integrauon over angle to get the flux results in: F = Fdf + Fhff , where 

and Ftifi = 47c S’(T){ 1 -(1 +z/4)e-l+~Ez(~)/4 } /3 

Rather than use a flux or temperature boundaty condition as is often done for diffusion 
problems. the exponentially attenuated radiation that should be absorbed by each zone was 
calculated and used as a source of heating. Properly applied, this allows the effect of both 
hot Planckian sources and non-Planckian sources, as well as art anisotropic distribution of 
sources to be treated. An additional modification allows the anisotropic re-radiation to be 
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means [ha: if a surface changes sham fe.~.. 1s w’aroed I but does not change lIS ‘DO UnaW. a.. 
seem from the otner sun-ace of the u-air. men the view fac~or aoesn’ t change, Seconti. ~ iet - 
factors scale. h- two sufl-aces are moved apart and exuanae G [0 keen me anguiz outilne m: 
same. then their view factors are unchanged. Therefore. for a geometp that cnanges aue w 
a uniform exparmon (or contraction ~ of the whoie problem. ail me \lev.’ factors rematn tnt 
same. If a surface IS uniformiy tilted. then to first order the change in the vieu factor 1> 
propotmonal to the change m the cosine of the angle between the nomml of the tiltec sun-ace 
and the lme between them. Finally, the vlewfactor for a surface tha[ is so warped as to sio~ 
across its apparent original boundary changes only m propomon to that pan which sio~s 
across the orgmal boundag. This means that small charges in geometry can be handiec 
by simply scaling the view factors appropriately. One can perioalcally recalculate the J’leu 
factors to track the accuracy as scaling effects accumulate ol’er many time steps. 
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J’.W.ATIOX.AL-DIFFEKXCE FL@ J\--T}”PE SCEIE>lE 

FOR SD DIFFL.!SIOS EQU.ATIOX O\ GRIDS 

OF .ARBITRAR}- I-EXW-IEDRO\S. 

Btitmo’, S.1”.. Beiayaet S.?.. Bonaarenko }-u..:... Gore’. 1“.1’.. Koroiiova T.I”.. Pe~na)L 
P.]. 

Tne paper addresses the construc~ion and nurtm-ica! stuci] of 

difference scheme for SD equation of non-smtion~ line%- isotropic 
and anisotropic diffusion b} variational method using tn: diffusion 
eaua~ion of floiv ~pe ( A. P. Favorsk) method generalized for a 3D 
anisotropic case [1]’). 

A line~- SD difision equation is uncm consiaera~ion: 
-, . 

Q.~=-dlL~- . ~=~ . (]) 

~vnere 1..” = (\\’i . \\”= . R-j ) is the heat flow vector ~~hose components are equal to 

(2) 

Here L is temperature. Q is volume heat capacit]. D,, is a symrnewical positi~el> defined 

matrix of diffusion coefficients. in anisotropic case D = D.6 The boun~~ is 
1. ,.) 

specified b> a fio~~ and or fio~v-~emperature combination ( including on]! temperature) 

‘/(?. x). !\l’(t. x’). fi(x) -13(t. x). L_(I. x)= f(I. x) . x~r: =m ,r, (4) 

Here ii( x) is the external normal. (Z.G is a scaku product. (4) assumes that !1 
p=o. -~.pso. kxd. 

Similarl} TO [1]. both the flot~ definition (2] and bounckq condiuon (4} result 
simultaneous]] from rninimality condition for con~ex functional 



~vhere L= j~,,; mamx is re~erse to I)= :D,,! matn.s. In tne case. wmn co~.n’u:;n; t~t 

mlnlrnaji~ conciilion for functional (j ) i: is onl~ the G“ fIO\\ tin: is ymei. Ikhiit In: 
bouna=j conaluon (3 1 lS accountec as m. adci[tlona: resmcuor.. i.e. nornui iio~f 
~arianons are assumed to be equal to zero on the bound~~ secllon r., 

To solve the problems (1 )-(4) numerically we use the grid composed of arbitraq 
hewhedral cells whose faces might be represented by linear sun-aces strelched over the 
smaigh~ edges of hexaheciron. The U,JA temperature. specified in cell centers. is 
average volume temperamre in cells. The volume of hexahearal J-,.,4 cel 1 is found 

famiiiar formuki.s. for example, [~]. Normal components tV<,.Q. lV;,,.k and W“q,,, for the 
heal flows. averaged o~er the surfaces of conesponding faces. are specified 
hexahedron faces ha~’ing S:,J.~, .&L Ii s~q.k areas. fif? law Of conse~ation (]) 

an 
D>” 
<. 

on 
is 

approximated in each cell in the regular way (see Fig. 1 ) 

n-l ~ ,n 

Q ~ ‘ ‘ ‘;lL ““k =-DI~:,,Lti”n-l . 1.) . 

I.j. k 

T 

w: 1 },.: ~ 
-— . . . . 

. . . . . . . . ...”” ‘ 

\ 

M’: 1 

i 
It-q 2 

I 

Fig. 1 

To approximate 
approximate functional 
surface integral in (5) is 

.- 
of quadratic expressions from normal flow components. \“olume inte@ ( 5 } o~’er the 

~olume of one hemhedral cell is substituted b!” the expression 

the ratios (2) and boundary conditions (-l ) i~ is necessaq to 

(5) on the grid and to compute its mmimalit> condition, The 
substituted b) an e~idem sum of @Pn~ over the bounchm edces 



Then ‘ C-- temperatures are excluded in the equations ob[ained ~} t~e ~Quatlon of 

baiance (6J and that leads to equations for normal fio~v components 

A: R’;,-:,, -B< .1{’: +C: .M’s,.t ,, =F< ). l.,. k I.j. k I.].. I.,. i 

A; - \!’; - B; .\\ ’:,,, +C: . \{”; ..) ~ = F; , !-i, i I.J. L I.!, L I J-l, i ,.,. L 

Tnis system of equations is computed by block iterations accorain~ to Seichel. 
each iteration uses the runs along the correspondin~ grid line. the right parts are computed 
each time ~vith the ~alues known, Jllen iterations are completed and fioi~s are defined. 
new temperatures are compu~ed from the equations of balance (6). (7). Since the 
fimclional being minimized is strictl) convex. the iteration process of the kind is sure m 
altvays con~er:e. The tesl problems computed on orthogonal and rather obiique grids 
ttstifi to the number of such iterations to be approximate]! proponional to the square roo[ 
of Couran~ number. In isotropic case ~vith a grid composed of rectan~ular parallelepipeds. 
the constructed difference scheme allo~vs to exclude the fioiYs complete]! and to obtain an 
ordin~ se~en-point implicit scheme. 

To exempiifi the accuracy of the constructed difference scheme ~fe \vould refer 
to computation resul~s of a problem on cube cooling. both isotropic [3] and anisotropic. A[ 
the initial moment t=O inside the cube ~ve ha~e C? = [ CI<X<L. O<y<l. OZZ<L; . L= l. the 
temperature is constant C( x.].z.0) =1. (x. >. z) E .C1. the boundaq is specified b} the 
tempermure V(Y. J .Z .t ) =0. (Y .J. z)= F.C2. 1>0. Heal capac]~} Q=]. matrix of diffusivi~) 
factors is diagonal D,,, =D, 6,, . ~vith D;= D.=D,=l for isotropic case and D,=3. D:=D:=I 
for anisotropic case. A accurate solution of the problem looks like folio~vs: 

U’(x. !.~t)=w (x. L. D,. t). w(~.L. D.. t)y/(x. L. D,. t) : 
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I 

Fig. 2 

Errors E ~ = ~ja~!~ –L-2 (xl,L .Y .21,,, .t) at time t=O.OS are given in the Table 
!.J. k - l.J. ~ 

..4 

problem grid ~~~ 
I 

&JIJ I R:{R:~ 
I I 

I isovopic orthogonal ‘ 4.745 .10-~ [ 3.65910-; [ 6.60 0.579 
I lsotroplc I oblique j.000.” ]()-~ 1 ~~jj.lfj-; I 6.63 I 0.6-5 ~ 

R, and R: \alues. given in the Table. result from the error C. decomposed in terms of 

ortho~onal and oblique grids. the fon-nula pro~es 10 be comect for (he error and 
inaccurac> on oblique grid proves to be insisyificant. 

The program of numerical solution for 3D diffision equations based on the 
difference scheme described. both for isotropic and anisotropic cases. is used presentl} to 
simuiate turbulent diffusion ~vhen problems on aerosol and other atmospheric pollutant 
trmsfer are computed in frames of TREK code [-l], 

29L 



a .4. S. Sh~edo~. Equations for cell voiumes. i : mathematical notes. - 1980. - l“oiume 39. -. 
=4. - p.597-605. 
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for 3D heal conduction equation solution and computational results of a demonstration, 
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Computational simula~ion of physical processes. -1996 .- =3. - p.77-84. 

4. A. L. Stacinik. .A.-4. Shanin and }“u..+.}-anilkin. Eulerian technique TREK for compu~in: 
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Prowsso~. -1994 .- =4. - p.7~-78. 



Index of Authors & Co-Authors 

Adarnke\’ich. G..4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3 
.%ieosimn. l’. ~-. . . . . . . . . . . . . . . . . . . . . . . . ..-. 135 
.Wexeyet. .4. l“ . . . . . . . . . . . . . . . . . . . . . . . . . ...4. 245 
.4nareye!. E. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5 
.4tkins. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Baidin. G. ~’. ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bakhrah. S. hl. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...6. 69 
Bazhenot. S. 1’ - &. s:. 29] . . . . . . . . . . . . . . . ...1. 
Bazm. A. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5. 79 
BelcioJ. S. A. . . . . . . . . . . . . . . . . . . . . . . . . . ...11.239 
Beiak. J. F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...10. 13 
Bel}ako~. I. M. . . . . . . . . . . . . . . . . . . . . . . . . 11.239 
Belya>’e~. S. P. . . . . . . . . . . . . . . . . . . . . . . . . ...8. 291 
Ber~strom. Jr.. P. h!. . . . . . . . . . . . . . . ..I9. 2j9 
Blanford. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...12 
Boercker. D. B. . . ...<.... . . . . . . . . . . . . . . . . . . . . . . Is 
Bonciarenko. Yu A. . . . . . . . . . . . . . . . . . . ...8. 291 
Brandon. S. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...52 ~T~ 4.-,- 
Bucheron. E. A. 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Butne~. O. 1. <; -7< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,- 
Byko\. A. X. <~ 77< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /- 
Caramana. E. J. . . . . . . . . . . . . . . . . . . . . . . . ...14. IS 
Chandler. ~“. P. . . . . . . . . . . . . . . . . . . . . . ...19.259 
Clouse. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...16 
Clover. .M. R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I- 
Colims. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1s 
Cox. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.259 
Cranfill. C. M’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...17 
Decker. C. D. . . . . . . . . . . . . . . . . . . . . . . . . ...49. 249 
Delo\. \“. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...60. 87 
Dementye\. Yu A. . . . . . . . . . . . . . . . . . . . . . ...9. 79 
Dibiro~. O. A. . . . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Diegert. C. . 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 
Dilts. G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~I 
E1suko\. t’. P. . . . . . . . . . . . . . . . ...22. 105. 12 
Evans. R.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..j~. ~~j 

Faehl. R. J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...50 
Fang. H. E. ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 
Fedotova. L. P. . . . . . . . . . . . . . . . . . . . . . . . . . 11.239 
Ferguson. J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Ferguson. J. M 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Fisler. D. K. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...45. 199 
Ford. D. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...45. 199 
Fye. R. M ?J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Garanm. S. G. . . . . . . . . . . . . . . . . . . . . . . . . . . . I I. 239 

Glosli. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...15 
Gore\. 1-. 1-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..S. 291 

Goroaniche\. A. 1“. . . . . . . . . . . . . . . . ...26. !95 

Greenberg. D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...2- 
Guse\. J“. Yu < . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Gustavsen. R. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5- 
Ham U’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2s 
Hanmann-Sinatar. C. L. . . . . . . . . ...19.259 
Heffelfinger. G. S . . . . . . . . . . . . . . . . . . ...45. 199 
Heinstein. M. W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..34 
Hendrickson. C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l~ 
Hixson. R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5- 
Helm. E. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...23 
Homstein. S. M. . . . . . . . . . . . . . . . . . . . . . . . 19.259 
Istrail, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2S 
Ivanova. G. G. . . . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Kandie\. Ia. Z. . . . . ____ 307’ :3,]49.~09.~~5 

Ken}. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...57 
Kc>. S, R- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...34 
Kirkpatrick. R. C . . ...35.36.50.97.285 
Kiishin. G. S. . . . . . . . . . . . . . . . . . . . . . . . . . ...37.1 35 
Korolkova. T. 1.. . . . . . . . . . . . . . . . . . . . . . . ..S. 291 
Kovalyo\. N. P . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Kozmano\. M. Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5 
Kozybaye\, R. M. a. ~-)< . . . . . . . . . . . . . . . . . . . . ----- 
Kress. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~.~ . . ..ls 
Km’on. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...18 
Lenoskj.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1s 
Lindemuth. I. R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...50 

Linn. R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..ss 
Litvinenkc. 1. A . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
hlalshako~. f’. D. . . . . . . . . . . ...62. 159. 165 
hlalyshkm. G. N. . . . . . . . . . . . . . . . . . . . ...30. 149 
hlar:ohn. L. G. . . . . . . . . . . . . . . . . . . . . . . . ...39. 51 
Medsen. N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..s3 
h’llronova. }’. F. . . . . . . . . . . . . . . . . . . . . . . . . . ...9. 79 
hlitchell. S. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...40 
Morel. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
Mosso. S. J ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...42 
Motlokho\. J’. N. . . . . . . . . . . . . . . . . . . . . . . . . . ...265 
Nielsen. Jr.. D . . . . . . . . . . . . . . . . . . . . . . . . ...53. 275 
Nemanic, M. ’75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Nikiforov. V. V. . . . . . . . . . . . . . . . . . . . . ...43. 219 
O. Rourke. P. J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...58 
Ober. C. C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...44 

296 



Index of .4uthors & Co-Authors 

Okuad. c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...-5 
Petro~.D.f”. . . . . . . . . . . . . . . . . . ...22. 105.123 
Pelma>a.P.I. . . . . . . . . . . . . . . . . . ..~. S. 83.291 
Pisliuno]’. 1“. X. . . . . . . . . . . . . . . . . . . . . . ...62. 2?5 
Pleteneva. X. P. . . . . . . . . . . . . . . . . . . . . . . . . 11.239 
Plokho}”. J.. T-. :? ?Oq . . . . . . . . . . . . . . . . . . . . . . . . . . . . -. 
Pohl. P. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...45. 199 
Poner. J-. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...23 
Procassini. R. J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Rasskazo~. P. A. . . . . . . . . . . . . . . . . . . . . . . . . . ...265 
Rasskazo~ra. i“. 1’. . . . . . . . . . . . . . . . . . ...47. 26j 
Rathkopf. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...55. 91 
Remizo~. G. N. . . . . . . . . . . . . . . . . . . . . . . . . 11.239 
Rezchikot. J.. Yu . . . . . . . . . . . . . . . . . . . . . 11.239 
Rile}. .N1. E. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...48. 143 
Ritchie. A. B. . . . . . . . . . . ...48.49.143. 249 
Rotko. l’. A. ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
R}abikina. N-. A. . . . . . . . . . . . . . . . . . . . . . . 11.Q39 

Sanota. hf. S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...58 
Schach ~’on Wittenau. A. E. . . . ...19.259 
Seleznev. f’. E. . . . . . . . . . . . . . . . . . . . . . . ...37. 135 
SeniloJra. O. V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60.87 
Shagaiiyet. R. AM . . . . . . . . . . . . 4. I I. 239. ~~j 
Shanin. A. A . . . . . . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Shaporenko. A. N. 965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Shashkot, M. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...14 
Sheehej. P. T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...50 
Shubin. O. Ii. . . . . . . . . . . . . . . . . ...22. 105.123 
Simonenko. V. A. . . . . . . . . . . ...22. Ioj. 123 
Simonov, G. P. . . . . . . . . . . . . ...6.26. 69.195 
Skidan. G. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...9. 79 
Skripnik. A. I. . . . . . . . . . . . . . . . . . . . . . . . . ...53. 275 
Smolarkiewiez. P. K. . . . . . . . . . . . . . . . . . . . . . ...51 
Sofrono}. 1. D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...11 
52.53.60.62, 75.87. 159. 165.239, 275 
Sofronov. V. N. . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Stadnik. A. L. . . . . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Statsenko. V. P. . . . . . . . . . . . . . . . . . . . . . ...63. 235 
Stone. C. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~~ 
Summers. R. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~~ 
Svatos. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55.91 
Swartz, B. K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...42 

Taraso\. \’. 1, . . . . . . . . . . . . . . . . . . . . . . . . ...6.. :35 
Tautges. T. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..JC 
Ta}ior. P. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5~ 
Tnlsseil. Jl”. R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5- 
Tikhornirot,B. P. . . . . . . . . . . . . . . . . . . . . . . . . . . . Q TQ 
Tikhornirova. E. N. . . . . . . . . . . . . . . . . . . . . ...9. 7CI 
Tor-k. D. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..s- 
Toropova. T. A. . . . . . . . . . . . . . . . . . . . . . ...63. 225 
Trease. H. E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..ss 
Troullier. K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1s 
Trucano. T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..s9 
Uyemura. lM ~~< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -,. 
VakMamova. L. L, . . . . . . . . . . . . . . . . ...11. 239 
Vatulin. V. l;. . . . . . . . . . . . . . . ...9.11. 79.239 
Vershmin. V. B. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...60. 
Vinokurov. O. A. . . . . . . . . . . . . . . . . . . . . . . 11.239 
Volko~. S. G. . . . . . . . . . . . . . . . . ...62. 159.165 
Voronin. B. L. . . . . . . . . . . . . . . . . . . . . . . . ...53. 275 
J70rthman. J. E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5. 
Weatherby. J. R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...54 
Whalen. P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...15 
Won:. M. K 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Yanilkin. Yu V. ..26.43 .63.195.219.235 
Yerrnolovich. V. F. . . . . . . . . . . . . . . . . ...11. 239 
Yerofey’ev. A. M. . . . . . . . . . . . . . . . . . . . . . . . . . -,. ~; 775 

Yudin. Yu A. . . . . . . . . . . . . . . . . . . . . . . . . . ...43. 219 
Zharova. G. V. . . . . . . . . . . . . . . . . . . . . . . . ..4s. ~19 
Zhogo\. B. M . . . . . . . . . . . . . . . . ...62. 159. 165 
Zocner. M. A. . . . . . . . . . . . . . . . . . . . . . . . . ...65. ~71 
Zurek. A. K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5Y 
Zvenigorodskaya. O. A . . . . . . . . . . . . . . ..-l. 245 

297 

— —. —.. —. . _—— 



DISTRIBUTION: 

1 hlS-9018 Central Technical Files. 89-10-2 
. NLS-0899 Techmcal Libra~. 4916 
7 MS-06 19 Re~leu ~ Approval Desk. 12690 

For DOE/OSTI 

67 Als-oul 9225 
To be distributed to conference attendees 

298 


